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Electrodynamics of a two-electron atom with retardation and self-interaction

Jayme De Luca
Departamento de Fı´sica, Universidade Federal de Sa˜o Carlos, Rodovia Washington Luiz km 235, 13565-905,

Caixa Postal 676, Sa˜o Carlos, SP, Brazil
~Received 8 April 1998; revised manuscript received 13 July 1998!

We study the linear stability of a circular orbit in a two-electron atom, including retardation and self-
interaction effects. We calculate all the eigenvalues of the linear stability problem, expanded up to third order
in v/c. The retardation effects break the scale invariance of the Coulomb dynamics, and we discuss how this
manifests in the linear stability of simple circular orbits. For some discrete energies, the linear eigenvalues
define an extra resonant constant, which is important for the finite time stability of the orbit~e.g., emission of
sharp spectral lines!. We compare the magnitudes of the resonant orbits to the quantum atomic results.
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PACS number~s!: 05.45.1b, 31.15.Ct, 03.20.1i
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I. INTRODUCTION

The helium atom with Coulombian interaction is a prot
type of a nonintegrable dynamical system. A simple prope
of the Coulomb interaction is its scale invariance; that is,
equations of motion are invariant under the scale transfor
tion t→Tt, r→Lr with T2/L351. Due to the finiteness o
the speed of light, if one includes the retardation of the C
lomb interaction, the dynamical system is not scale invari
anymore. We have recently proposed that the retardatio
the Coulomb interaction could stabilize some orbits of
helium atom by the existence of an extra resonant nor
form constant@1#. This resonant constant could delay t
ionization time of some discrete orbits up to a time sc
consistent with the emission of a sharp spectral line.

In this paper we study in full the linear stability of
circular orbit of a two-electron atom with the inclusion
retardation and self-interaction. For the simple circular
bits, the stability analysis can be carried out analytica
which is not the case of generic chaotic orbits. A circu
orbit is one where the two electrons are in the same circ
orbit and in phase opposition, that is, along a diameter@2#.
The center of the two-electron atom is supposed to hav
positive charge of valueZe (Z.1/4) and we henceforth ca
it the nucleus. The linearized dynamics about a circular o
has one unstable direction, one stable direction, and ten
trally stable directions@2#. For an infinitely massive nucleus
a two-electron atom has a six degree of freedom Hamilton
system with only four independent constants of motion@3,4#.
~Namely, these constants are the energy and the three
ponents of the total angular momentum.! Because there ar
only four constants, the Coulombian dynamics in the nei
borhood of a generic orbit can in principle be unstable~by
lack of constants!, and actually this dynamics is unstab
about circular orbits@2#. Here we investigate if an extra reso
nant constant can exist in the neighborhood of a discrete
of circular orbits. This extra constant resonant normal fo
~adelphic integral@4#! requires a resonance to exist@4–8#, as
we discuss in Appendix D.

Historically, the understanding of the electrodynamics
a charged particle interacting with its own electromagne
field @9–13# came very late. A classical solution to the se
PRE 581063-651X/98/58~5!/5727~15!/$15.00
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interaction of a charged particle of very small radius is d
scribed by the Lorentz-Dirac equation of motion, hencefo
called LDE. This equation was first obtained in 1938
Dirac @10#, using a covariant derivation without mention
the structure of the particle. Dirac was also the first to r
ognize and understand the runaway solutions of the L
@13#. In this work we consider the classical electrodynam
of pointlike charges with a renormalized mass, as descri
by the Lorentz-Dirac theory@11–13#.

Another late development of Maxwell’s theory was th
work of Page~1918! @14# on the expansion of the Lie´nard
~1898! and Wiechert~1900! formula. This formula is com-
plicated because of the retardation constraint, and one wa
convert it into a useful differential equation is to develop t
constraint in a Taylor series. This was done by Page up to
fifth order in 1918@14#, who also explored this formula in
connection with self-interaction. We henceforth call the e
pansion of the Lie´nard-Wiechert interaction the ‘‘Page se
ries.’’ Truncated to second order inv/c, the Page series de
scribes a Lagrangian interaction. This Lagrangian is
Darwin Lagrangian@13,15–17#, which introduces the first
retardation correction to the Coulomb dynamics. The Darw
Lagrangian is used in quantum mechanics to produce
Breit operator, which is the generalization of Dirac’s relati
istic wave equation for two-electron atoms, correct to seco
order inv/c @18,19#. The Breit operator has been used su
cessfully to describe the spin-orbit coupling and fine str
ture of helium@19,20#. The third-order term of the Page se
ries is dissipative, and of course not Lagrangian.

The most studied case of a two-electron atom is the
lium atom. The Coulomb dynamics of helium is not int
grable, because only three constants of motion in involut
exist for the dynamics@3,21#. This nonintegrability of helium
appeared historically as a hindrance for the early quant
tion attempts of the Copenhagen school@22#. Quite recently,
because of the renewed interest in periodic orbit quant
tion, some few numerical studies already exist on the C
lomb dynamics of helium@23,24#. For example, it is now
known that most orbits lead to the self-ionization~ejection of
one electron!, after a long-term chaotic transient, for mo
initial conditions@24#.

The introduction of the first retardation correction of th
5727 © 1998 The American Physical Society
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5728 PRE 58JAYME De LUCA
Coulomb interaction modifies the dynamics in a quantitat
and in a qualitative way, as far as this work is concern
The Darwin Lagrangian is rotationally invariant, which ge
erates an angular-momentum-like constant of motion acc
ing to Noether’s theorem@21#. This constant is the angula
momentum of the electrons, with relativistic correction, p
the angular momentum of the electromagnetic field. Ther
also an energylike constant~because the Darwin Lagrangia
is time independent!. These are small perturbations of th
four constants of the Coulomb dynamics, and this is
quantitative change. The qualitative change is the existe
of the extra resonant constant in the neighborhood of so
orbits, and we stress that this is a genuine nonlinear eff
because the frequencies of the linearized dynamics with
tardation depend nonlinearly on the orbit’s frequency. T
extra constant appears only after one includes the retarda
effects, which unfold the scale invariance degeneracy of
Coulomb dynamics. In this sense, we have included the
tardation because it is absolutely necessary, and not to a
some better precision.

In this paper we solve exactly a simple problem and
then apply the results heuristically to understand the re
nance structure of complicated orbits. The exact simple pr
lem is the complete stability analysis of a generic circu
orbit, including retardation and self-interaction up to thi
order in v/c, which is done here in full detail for future
reference for a generic two-electron atom. We develop a
tematic method to handle the variational equations with
clusion of the retardation and self-interaction corrections.
a heuristic application of the linear problem we just solve
we explore some of the very interesting resonant orbits ab
which a resonant constant is possible. We show that a de
eracy determines which eigenvalue enters the resonance
dition to produce orbits in the correct atomic magnitude.
few numerical experiments have convinced us that only
nite perturbations of circular orbits can be stable for lo
time scales. In view of this, our stability analysis can only
used as an approximation to the stability of these more c
plicated chaotic orbits. Even though it is a mathematica
sound idea that a small resonant perturbation can radic
change the topology of a long-lived orbit@25#, we cannot
calculate analytically the resonance structure of such com
cated orbits. Further numerical and analytical work should
done to check the heuristic criterion provided by the re
nance condition and to obtain exact numerical quanti
such as frequency of sharp lines, etc. The comparison of
magnitudes of the resonant orbits to the quantum results
duces some astonishing agreement. This comparison im
diately exposes the relevance of our heuristic approac
atomic physics and suggests what further results should
sought by use of rigorous nonlinear dynamics. The first st
ing coincidence is that our dynamical orbits have energ
around the correct atomic magnitudes and the emitted
quencies agree very well with some frequencies of the sp
tra of helium and Li1 ion. The essential novelty in the wor
is that we are discussing a dynamical system that can em
sharp line.~The other known case of emission of sharp li
is the simple linear system@26#. To emit a sharp line, the
orbit must be stable in a time scale of some 106 turns, the
type of stability that resonant normal form can provide.!
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Some cautionary notes are in place before one st
reading this paper: First, we are studying dynamics in
neighborhood of a circular orbit, which is also a period
orbit. One should not think though that our approach h
anything to do with periodic orbit quantization@3#. It is
known that in general EBK cannot be applied to gene
orbits of Coulombian helium because they are unstable@3#.
Second, the material in Sec. VI is heuristic or at the best
approximation aimed at introducing a few essentials o
brave new dynamical system.

This paper is organized as follows: In Sec. II we discu
the electromagnetic formulas. In Sec. III we consider
Coulomb stability problem, which is order zero of the Pa
series formula. In Sec. IV, we discuss the inclusion of t
second-order terms and consider the necessary conditio
the resonant constant. In Sec. V we consider the influenc
the radiative terms, in Sec. VI we compare our results to
atomic results and in Sec. VII we put the discussions.
Appendix D we discuss the construction of the resonant n
mal form in an intuitive way for completeness.

II. ELECTROMAGNETIC FORMULAS

In this work we include the self-interaction effects as d
scribed by the relativistic Lorentz-Dirac equation~LDE! with
a renormalized mass@10–13#. The LDE equation for an elec
tron of charge2e can be written in the convenient, nonco
variant form as

d

dt
~gMeẋe!5G1Fext, ~1!

where ẋe is the electron velocity,Me is the renormalized

electronic mass@11#, and g[1/A12(uẋeu/c)2. In Eq. ~1!,
Fext is the external force acting on the electron andG is the
radiation reaction force. For circular orbits, the lowest ord

term of G in powers ofv/c is G5(2e2/3c3)x&e . The next
correction toG is of order (v/c)5 for a circular orbit~see, for
example, page 116 of Ref.@12# for an expansion!.

We now introduce, for later use, the expansion of t
retardation constraint of the Lie´nard-Wiechert interaction
~the Page series@14#!. Let x be the position of a chargeq,
and b its velocity vector divided byc. The formula for the
electric field caused by this chargeq at a pointp is

Ep5q
n̂

r 2
1qH @ ubu223~ n̂•b!2#n̂

2r 2
2

ḃ

2rc
2

~ n̂•ḃ!n̂

2rc J
1

2q

3c3
x&1•••, ~2!

where n̂ is the unit vector pointing from the charge to th
point p, r is the distance from the charge top, and the ellipsis
represents terms of order higher than 3 inv/c. Notice that all
functions are evaluated at the present time. For a circ
orbit, the term of Eq.~2! inside braces is of order (v/c)2

times the Coulomb term and the term with the third deriv
tive of position is of order (v/c)3 times the Coulomb force
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A detailed expansion, correct to fifth order inv/c, is calcu-
lated in@14#. The magnetic field caused by the chargeq at p
has the following series:

B5
q

r 2
@b3n̂#1•••. ~3!

This first term is the Biot-Savart term and the next term
the series would produce a force of fourth order inv/c and
along the normal, and it is not important for the prese
work. In this work we consider only the above terms of t
electromagnetic interaction, and also consider the relativi
correction of Newton’s law for the electronic motion up
second order inv/c.

Let us now discuss electrodynamics with retardation a
self-interaction in the special case of the helium atom:
recall that the circular orbit is defined as one in which t
two electrons are in the same circular orbit but 180 degr
out of phase@2#. Along such an orbit, the total force actin
on electron 2 can be calculated using Eq.~2! and the self-
interaction of electron 2 to be

F5
2e2

3c3
~x&11x&2!27

e2n̂

4R2
~12 3

7 ubu2!, ~4!

whereR is the radius of the circular orbit. In Eq.~4! we have
also added the Coulomb attraction of thea particle and used
the approximation that thea particle is infinitely massive
and resting at the origin. If the two electrons are in the sa
circular orbit but in phase opposition, the force along t
velocity cancels out@first term on the right of Eq.~4!#, dem-
onstrating that the circular orbit is a possible periodic so
tion of the electromagnetic equations up to third order.

Notice the appearance of the dipole term in Eq.~4!,

D̈52e~ ẍ11 ẍ2!. ~5!

The total far field caused by the three particles depends
early on the quantityD̈, defined by Eq.~5!, up to quadrupole
terms. If this quantity is zero, the orbit is not radiating
dipole. The fifth-order terms of the Page series force and
fifth-order relativistic correction to the Lorentz-Dirac se
interaction introduce quadrupole effects. These effects wo
be important only in a much longer time scale, of ord
T/(v/c)5. In Sec. VI we show that the circular orbits dec
in a time of the order ofT/(v/c)3. Therefore, the effect o
quadrupole terms is small during the orbit’s lifetime. W
start the next paragraph by discussing this importance
quadrupole terms in detail.

Throughout this paper, it is very important to keep
mind the orders of magnitude relevant to atomic physics.
example, a typical value forv/c is v/c;1022. Typical val-
ues for the width of the spectral lines is of the order
(v/c)3/T, which is the inverse of a time to perform abo
106 turns along a typical orbit@27#. In the classical model o
the isolated hydrogen atom, because of dipole radia
losses, the energy loss during this linewidth time produ
dramatic changes in the frequency of rotation and therefo
band of dipole radiation is emitted, not a sharp line, as
discussed in@26#. This is Bohr’s @28# classical argumen
t
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against sharp lines in the one-electron system of the isol
hydrogen atom. The argument obviously does not apply
two-electron systems like the helium atom or the hydrog
molecule, since those can have orbits with a zero dipole m
ment. For oscillations about circular orbits of helium, b
cause there is no dipole radiation, a sharp line can be e
ted, provided the orbit is otherwise stable. The quadrup
power radiated is of size (E0 /T)(v/c)6, where E0 is the
Coulombian energy of the orbit andT its period. This power
times the linewidth timeT/(v/c)3 results in an energy loss o
E0(v/c)3, which is consistent with a sharp variation of th
emitted frequency.

A word of caution should be said about the fact that ter
in the Page series of order higher than two represent a
gular perturbation. Therefore, when one such term is
cluded in the equations of motion, there will be solutions
the equations that are not a perturbation of a mechan
Coulombian orbit. We call these solutions ‘‘nonmecha
cal,’’ as opposed to ‘‘quasimechanical’’ regular perturb
tions. In this work we investigate only quasimechanical reg
lar perturbations of circular orbits. To state it clearly, w
operate under the conjecture that there is always a non
away solution of the LDE in the neighborhood of conserv
tive orbits @29#.

If one wants the most generic ‘‘stationary state,’’ whe
the helium atom does not radiate in dipole, then one m
have D̈52e( ẍ11 ẍ2)50 for all times. If we integrate the
condition ẍ11 ẍ250 twice in time, we get

x11x25a1bt. ~6!

The constantb must be zero if the electrons are bound to t
center of force at the origin. One can show thata must also
be zero as follows: Substitution ofx11x25a and ẍ11 ẍ2
50 into the Coulombian equations of motion gives a po
nomial equation fora, anda50 is the only solution to this
polynomial equation. Along orbits that satisfy Eq.~6! with
a5b50, the interaction between the electrons just renorm
izes the charge of thea particle. The most general ‘‘quasi
mechanical’’ stationary orbit possible is then an elliptic
orbit, with circular orbits as a particular case. In this work w
do not consider elliptical orbits, which pose a more comp
cated parametric stability problem. The other kind of po
sible stationary orbits are symmetric collinear motions of
two electrons. These are orbits of zero angular moment
which are also singular orbits~Coulombian solutions with
zero angular momentum and zero dipole would fall onto
nucleus!. We discuss them briefly in Sec. VII.

If one is not interested in nonmechanical orbits, it is co
venient to truncate the Page series to third order and ass
that the truncated system describes all the essential ele
dynamics and that the next terms only introduce a sm
stochasticity. For nonmechanical orbits, such as zero ang
momentum orbits, the Page series is not convergent an
might be necessary to keep all orders, like in Eliezer’s th
rem @26,30,31#. In situations where the Page series is at le
asymptotic, the successive orders become important in
cessively longer time scales. For example, about a circ
orbit of periodT, the second order terms produce deviatio
from the Coulomb dynamics in a time of orderT/(v/c)2.
The third-order terms take a timeT/(v/c)3 to influence the
dynamics, and so on. In this work we consider the we
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defined dynamical system obtained by truncating the P
series interaction to third order, and we include the s
interaction to third order inv/c as well.

III. COULOMBIAN STABILITY OF CIRCULAR ORBITS

In this section we consider the nonrelativistic Coulom
dynamics of a two-electron atom in the neighborhood o
circular orbit. The plain Coulomb stability problem has a
ready been considered by many authors@2,32# using other
approaches, and we do it our way in Appendix A to intr
duce our perturbation scheme. The Coulomb interactio
order zero of the Page series~2!, and the scheme we develo
allows for the inclusion of higher-order terms of the intera
tion in an easy way. An alternative equivalent way to p
form this calculation is to transform to a coordinate syst
rotating with the frequency of the circular orbit. In this sy
tem the circular orbit is a fixed point of an autonomous v
tor field, the Jacobian matrix is independent of time, and
parametric problem is replaced by a linear eigenvalue pr
lem. The disadvantage is that one has to transform all
terms of the Page series to the rotating coordinates. We
back to rotating coordinates later on.

Newton’s equations of motion for the Coulombian tw
electron atom are

Maẍa5
Ze2

R1a
3 ~x12xa!1

Ze2

R2a
3 ~x22xa!,

Meẍ152
Ze2

R1a
3 ~x12xa!2

e2

R12
3 ~x22x1!, ~7!

Meẍ252
Ze2

R2a
3 ~x22xa!2

e2

R12
3 ~x12x2!,

wherexa , x1 , andx2 are the position vectors respectively
the nucleus, electron 1 and electron 2,R12[ux12x2u, R1a
[ux12xau, and R2a[ux22xau. In the special case of he
lium, the nucleus is ana particle, but we will use the index
a to label the coordinate of the nucleus in the generic cas
well. The nucleus has an arbitrary charge ofZe, and the
electrons have charge2e. The circular orbit periodic solu-
tion of Eq. ~7! is

xa50, ya50, za50,

x15R cos~vt !, y15R sin~vt !, z150, ~8!

x252R cos~vt !, y252R sin~vt !, z250.

According to Eq.~7!, the frequency of the orbit is related t
R by

Mev0
25S Z2

1

4D e2

R3
. ~9!

In this section,v andv0 are the same, but we will see late
on that because of higher-order corrections,v0 is only the
first term ofv in powers of (v/c)2. To simplify the notation
we define the quantity
e
f-

a

-
is

-
-

-
e
b-
e
et

as

f[S 1

8Z22D ,

which specifies a generic two-electron atom.
Linearizing Eq.~7! about the circular orbit~8!, we obtain

a parametric linear differential equation with coefficients p
riodic in time and periodT5p/v, as we discuss in Appen
dix B. The study of this time-dependent linear system f
lows standard Floquet analysis, as described in Appendix
It turns out, because of the symmetry of simple circular
bits, that the linear eigenvalue problem involves only s
Floquet components of the linearization.

The resulting matrix equations are

F 2S 1

2
14n̄2D 23i

2

3i

2
2S 1

2
14n̄1

2 D G F jn
d

xn11
d G50, ~10!

and

4F 2n̄2 0 Zfy 3iZf

0 2n̄1
2 23iZf Zfy

0 0 2~ n̄21D! 23iD

0 0 3iD 2~ n̄1
2 1D!

G F jn
a

xn11
a

jn
r

xn11
r

G50,

~11!

wheren̄1[n̄11, y[(1/%), andD[Zf(112y). Oncen̄ is
calculated from the secular condition, we can recover
Floquet multiplierm because any complex number can
decomposed in a unique way asn̄5n1m with n an integer
anduRe(m)u, 1

2 . As explained in Appendix A, the six linea
equations separate in blocks of two and four when we in
duce the convenient radiation and difference coordinates
this point the reader should take a look in Appendix A to s
the definition of the six Floquet components appearing in
equations.~The 232 block depends only on the Floque
transform of the difference coordinates and the 434 block
depends only on the Floquet transforms of the radiation
a particle coordinates.! Notice that the secular problems o
~10! or ~11! involve only n̄ and n̄1[n̄11. After we findn,
this defines that the only two nonzero components are
nth and (n11)th in Eq. ~A1! for the normal mode oscilla-
tion. An eigenvector calculation should then follow to dete
mine the ratio of these two Floquet components.

Finally, let us solve Eqs.~10! and~11! for the rootsn̄. For
Eq. ~10! the roots are

n̄521,0,21/2,21/2.

As regards the eight roots of Eq.~11!, four roots are 0,0,
21,21. From the general theory of linear ODE’s, at
double root liken̄50, the general solution is a ‘‘quasipoly
nomial’’ linear function of time@36#. The doubly degenerate
root n̄50 is then responsible for the homogeneous tran
tion solution with a constant velocity of the Coulombian h
lium. Evaluating the determinant of Eq.~11! and equating it
to zero, one finds that the other roots are given by
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n̄52 1
2 1e,

wheree is a solution of

e41S 2D2
1

2D e21S 1

4
22D D S 1

4
14D D50, ~12!

which is a quartic equation with solutions

e25 1
4 2D6AD~9D21!.

Inspection of the above formula shows that there is alway
pair of roots with negativee2 and a real pair of roots. The
pair with negativee2 describes an instability, which was firs
found by Nicholson@32# and in this work we refer to it as th
Coulombian radial instability@2,24#. This is an exponentia
growth in a time scale of the order of one cycle. The cor
sponding roots are given by

n̄52 1
2 6 iAD2 1

4 1AD~9D21!, ~13!

where i[A21. One also finds thatdxr is not zero for the
radially unstable mode, which implies that perturbatio
along this unstable mode radiate in dipole. We discuss s
consequences of this in Sec. V. The other two roots of
~12!, with positivee2 are approximated by

n̄52 1
2 6A 1

4 2D1AD~9D21!. ~14!

Notice that the quantityz that appears in the paper of Poiri
@2# is equal to 8 times ourD @D[Z(112y)/(8Z22)# and
that we are including the dynamics of the nucleus as well.
recover the results of Poirier one should puty50 in our
definition of D.

Last, we consider the oscillations perpendicular to
plane of the orbit, which we call thez direction. In linear
order in the oscillation amplitude, this oscillation is deco
pled from the oscillations along the plane. Starting from E
~7!, and linearizing about Eq.~8! we obtain

d z̈d

v0
2

1dzd50,

d z̈a

v0
2

2~8Zfy!dzr50, ~15!

d z̈r

v0
2

1~8D!dzr50.

The solutions to this linear problem are of type

dzk5ckexp~2ivl!. ~16!

The first equation is a simple separate linear equation and
solution to it with cdÞ0 requiresl561/2. The next two
equations of Eq.~15! become

F24l2 28Zfy

0 24l218D
GFca

cr
G50, ~17!
a

-

s
e

q.

o

e

-
.

he

and a nontrivial solution requiresl50,0 and

l56A2D. ~18!

The linearz oscillation is decoupled from the planar o
cillation, but of course it couples at higher orders in t
oscillation amplitudes.

As we mentioned in the beginning of this section, in
frame rotating with the frequency of the circular orbit, th
circular orbit itself is a fixed point of an autonomous vect
field. This vector field describes the Coulomb dynamics
the rotating frame. One finds that the inclusion of the seco
order and radiative terms still yields an autonomous vec
field for the dynamics in the rotating frame. This is the re
son why we were able to simplify the parametric equat
down to a 636 linear system. In this rotating system on
also has to diagonalize a 636 matrix ~two plane coordinates
for each particle!, and the exact same problem along thez
direction.

IV. INCLUSION OF SECOND-ORDER TERMS

In this section we consider the inclusion of the secon
order terms of the Page series and the second-order rel
istic corrections to the electronic dynamics. It is known th
the Liénard-Wiechert interaction truncated to second orde
v/c is described by the Darwin Lagrangian@13,15#

LDarwin5(
i

S 1

2
mi uẋi u21

1

8c2
mi uẋi u4D

2
1

2(i j
qiqj

r i j
S 12

1

2c2
@ ẋi• ẋj1~ ẋi•n̂i j !~ ẋj•n̂i j !# D ,

~19!

where the indices take the values 1, 2, anda, r i j [uxi2xj u,
and n̂i j is the unit vector in the direction ofxi2xj . This
Lagrangian depends only on the scalar product of the vel
ties and the distance between the particles, therefore
invariant under a global rotation of all the particle’s coord
nates. By Noether’s theorem@21#, this generates an angula
momentum-like constant of the motion associated with
symmetry, which is equal to the mechanical angular mom
tum plus a small functional correction of order (v/c)2, rep-
resenting the angular momentum of the electromagn
field. Because the Lagrangian is time independent, ther
also an energy constant of the motion. This makes four
dependent constants of the motion. According to@8#, for an
extra ~formal! analytic constant to exist, some extra res
nance condition must be satisfied by the linear frequenc
This extra constant is likely to be defined by a diverge
series, which upon optimal truncation might provide an ex
quasiconstant for a finite time scale. In the following w
study the second-order correction of the Coulomb eigen
ues.

Let us start by correcting the frequency of the orbit
given by Eq.~9!. A given circular orbit is characterized b
the velocityubu, and from this one can calculate all the oth
quantities of the orbit: angular momentum, frequency, a
radius. The Page series gives a correction in powers ofubu,
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and the first correction is of orderubu2, as it should be for
any relativistically invariant dynamics@17#. Adding up the
second-order magnetic~3! and second-order electric~2!
forces acting on the electron along the circular orbit we fi
the normal force

F52
e2n

8fR2
2

ubeu2e2n

8R2
.

Together with the second-order relativistic mass correct
this determines the second-order correction to the freque
of Eq. ~9! to be

v25v0
2@11~f2 1

2 !ubu2#.

A simple way to include this second-order frequency corr
tion is to multiply n̄ and n̄1 by @11(f2 1

2 )ubu2# on the
zero-order matrices of Eqs.~10! and ~11! before adding the
other second-order matrices. At this point one should look
Appendix B, where we evaluate the variation of the seco
order terms of the Page series, as well as second-order
tivistic corrections.

Next we evaluate the second-order corrections of the
genvalues. The algebraic manipulations were performed
ing a symbolic manipulator program~MAPLE version 4.0!.
Adding up the second-order electric field, second-order m
netic force, the second-order relatistic correction for the e
tronic masses and the correction to the frequency, we ob
a perturbation to the matrices~10! and ~11!. We write the
equation for the Floquet components, which separates in
parts just like Eq.~A4! splits into Eqs.~10! and ~11!. The
resulting second-order correction to be added to Eq.~10! is

ubu2F P2~ n̄! iQ2~ n̄!

2 iQ2~2n̄1! P2~2n̄1!
G F jn

d

xn11
d G , ~20!

where P2(n̄)[@(8f22)n̄218fn̄13f/2#, Q2(n̄)[@(4f

12)(n̄22n̄)1f/2#, and n̄1[(11n̄). Let us first consider
the correction in powers ofubu of the roots of Eq.~10!. This
is done by adding up matrices~10! and ~20!, and taking the
determinant of the result. The result, up to second orde
ubu, is

16n̄~11n̄!~112n̄!21ubu2$~716f!18~125f!n̄

18~3213f!n̄2116~124f!~2n̄31n̄4!%1•••.

~21!

In the neighborhood of the simple rootn̄50 of ~10!, Eq.~21!
takes the form

16n̄1~716f!ubu250,

which yields n̄52(716f)ubu2/16. Analogously, in the
neighborhood ofn̄521, Eq. ~21! takes the form

216~ n̄11!1~716f!ubu250,
d

n,
cy

-

p
-
la-

i-
s-

g-
c-
in

o

in

which yieldsn̄5211(716f)ubu2/16. Last, and crucial for
this work, is the bifurcation of then̄521/2 double root.
About n521/2, Eq.~21! becomes

24~112n̄!216~112f!ubu250,

with roots

n̄52
1

2
6ubuA3~112f!

2
. ~22!

Notice that the correction of the degenerate root in Eq.~22!
comes with alinear power of ubu, differently from the
simple roots, that are corrected only at orderubu2 ~exactly
because of this degeneracy!. This root undergoes the faste
change of all for smallv/c, and one should expect it to b
the first to accommodate a ‘‘new’’ resonance condition.
the construction of a resonant normal form constant, t
frequency allows the resonance condition to be satisfied w
the lowest possible value ofubu. ~In the same way explained
in Sec. VI, one finds by inspection that resonances am
frequencies corrected only at second order lead to relativ
orbits, not very interesting for atomic physics.!

Next we calculate the second-order corrections of E
~11!: Adding up all the second-order corrections to Eq.~11!,
second-order electric, second-order magnetic, second-o
relativistic and correction of the frequency we find the fo
lowing matrix to be added to Eq.~11!

ubu2F ~224f!n̄2 0 0 0

0 ~224f!n̄1
2 0 0

R~ n̄! iS~ n̄! T~ n̄! iW~ n̄!

2 iS~2n̄1! R~2n̄1! 2 iW~2n̄1! T~2n̄1!

G
3F jn

a

xn11
a

jn
r

xn11
r

G , ~23!

where R(n̄)[28(113f)n̄218fn̄, S(n̄)[4(12f)n̄2

1(2f24)n̄, T(n̄)[22(118f)n̄214fn̄, and W(n̄)
[2(122f)n̄222n̄, and we have left out terms proportion
to y51/%. To calculate the corrections to the roots of E
~11!, we add Eq.~23! to Eq. ~11!, take the determinant an
equate it to zero. Adding Eq.~23! to Eq.~11! and evaluating
the determinant we obtain, up to second order inubu2,

256n̄2~11n̄!2H ~ n̄412n̄31~112f!n̄212Zfn̄

1Zf28Z2f2!110fubu2F n̄412n̄31S 9

10
1

Z

5
1

6Zf

5 D n̄2

2S 1

10
1

Z

5
1

5Zf

3 D n̄

1~2 16
5 Z2f21 8

5 fZ21 7
5 Zf1 1

2 Z!G J . ~24!
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TABLE I. Corrections to the sixteen stable regular roots,f[1/(8Z22), andD[Zf(112y).

Coordinate
involved Coulombian roots Corrected roots

dzd l56
1
2

l56
1
2F12S225f

4 Dubu2G
(dza,dzr) l50,0,6A2D

l50,0,6A2D~12
3
2 fubu2!1

64i

3
Zf2ubu3

dxd
n̄50,21,2 1

2 ,2 1
2

n̄52
716f

16
ubu2,211

716f

16
ubu2,2 1

2

6A316f

2
ubu

(dxa,dxr) n̄50,0,21,21,

21
2

6A 1
4 2D1AD(9D21)

n̄50,0,21,21,2 1
2 6A1

4 2D1AD~9D21!

6c~Z!ubu21 id~Z!ubu3
e

in
-
an

o

on

re

d

ec-
al-
the

ing
in

to
n-
c-
ith

Eq.

qs.
is

oth

d
nd
-

Notice that according to Eq.~23! we still have the degenerat
roots atn̄50 andn̄521. An inspection in Eq.~24! shows
that from all the roots given by Eq.~11!, only n̄50 and n̄
521 are still degenerate after the inclusion of the term
ubu2. We will not develop it here, but foryÞ0 these degen
erate roots become simple roots and each other root 0
21 is corrected by terms proportional toyubu2. The roots of
Eq. ~14! are nondegenerate and are corrected only at sec
order as

n̄52 1
2 6AD2 1

4 1AD~9D21!6c~Z!ubu2. ~25!

The functionc(Z) is a complicated function ofZ, and we
give its value for the most interesting values ofZ, namely,
C(2)50.15241,C(3)50.11926, andC(4)50.10126.

As regards the second-order corrections for oscillati
along thez direction, the equation fordzd is changed to

d z̈d

v0
2

1dzd1ubu2F ~ 1
2 22f!

z̈d

v0
2

2fzdG50,

and the roots are changed to

l56
1

2F12S 1

2
2

5f

4 D ubu2G .
In an analogous way, we find that the second-order cor
tion to Eq.~17! is

ubu2F 4S 1

2
2f Dl2 0

16S 2Zf2
1

4
2f D 212fl2

G Fca

cr
G . ~26!

Adding Eq. ~26! to Eq. ~17!, taking the determinant, an
equating it to zero, we find that thel50 double root is
preserved and the roots of Eq.~18! are corrected to

l56A2ZfS 12
3f

2
ubu2D . ~27!
d

nd

s

c-

This completes the calculation of the second-order corr
tion to all the Coulombian roots. In the next section we c
culate the third-order corrections, and Table I shows all
roots corrected to third order.

V. INCLUSION OF THE DISSIPATIVE THIRD-ORDER
TERMS

The terms of order higher than two in Eq.~2! aresingular
in the sense that they introduce the third derivative, and br
up a new solution to the dynamics. The next natural step
the study of the stability of the circular orbit would be
include the third-order terms in the calculation of the eige
values. In the following we calculate the third-order corre
tions, in a way analogous to the second order. Starting w
the third-order correction to Eq.~17!, we find the third-order
matrix

S 256ifubu2

3
l3D F 0 0

~22Z! 1GFca

cr
G ,

which describes the radiative correction to be added to
~17!, in disregard of terms proportional toyubu2. Solving the
perturbed secular determinant, we find that thel50 double
root is preserved and the roots of Eq.~18! are corrected to

l56A~2Zf!@12 3
2 fubu2#1 64

3 iZf2ubu3, ~28!

where againi stands for the complex uniti[A21.
Last, let us calculate the third-order corrections to E

~10! and ~11!. Because of symmetry, one finds that there
no third-order correction to Eq.~10!. This is readily seen
because the third-order variational force is the same for b
electrons, being proportional to thedxr variation. The third-
order correction to Eq.~11! can be calculated using the thir
order of Eq.~2!, in an analogous way we used for the seco
order. We find the following matrix describing the third
order correction to Eq.~11!:
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128

3
ifubu3F 0 0 0 0

0 0 0 0

2~22Z!n̄3 0 2n̄3 0

2~22Z!n̄1
3 0 2n̄1

3 0

GF jn
a

xn11
a

jn
c

xn11
c

G .

Adding the above matrix to Eq.~11!, add the second-orde
equation~23!, and take the determinant. The result produ
a correction to Eq.~24! given by

d352
16 384ubu3i

3
~11n̄!2n̄2~112n̄!~ n̄412n̄31n̄2

1Zfn̄21Zfn̄1Zf!. ~29!

From the above, it is easy to see that the eigenvaluesn̄5

21/2, n̄521, andn̄50 do not acquire any imaginary pa
at third order. It is also straightforward to add Eq.~29! as a
perturbation to Eq.~11! and calculate the imaginary corre
tion to Eq. ~14! ~using the programMAPLE!. The imaginary
correction is of typeid(Z), and the most interesting value
of d are d(2)50.766, d(3)50.740, andd(4)50.731. In
Table I we show all the corrections of the eigenvalues,
cluding orderubu3 correction. We only showed in Table I th
correction to the regular roots, by which we mean the o
that were already roots of the Coulomb dynamics. The in
duction of the third order brings up nine more singular roo
which we do not consider. Last, we did not show in Tabl
the unstable pair of eigenvalues~13! of the radial instability
either, which are part of the 18 Coulombian eigenvalues
are not interesting for resonance conditions. The fact that
left out the singular roots is consistent with the conject
stated in Sec. II that there is always a conservative solu
in the neighborhood of the exact nonrunaway solution of
LDE @29#. As far as the next heuristic section goes, the v
large singular linear frequencies would predict resonant
bits only in the relativistic energy region, which is anoth
reason to believe they are unphysical.

VI. HEURISTIC CRITERION OF RESONANT ORBITS

In this section we explore the orders of magnitude
some of the orbits. Since the retardation of the Coulomb
interaction breaks the scale invariance of the equation
motion, one expects to find discrete stable orbits at so
particular order of magnitude, as a signature of this lack
scale invariance. We explore here the resonance conditio
a heuristic tool to predict the order of magnitude of the
stable orbits. Rigorous numerical integration should follo
to prove this heuristic criterion. As a matter of fact, a fe
numerical experiments have convinced us that the most lo
lived orbits are finite perturbations of elliptical orbits@24#.
Even if infinitesimal perturbations of circular orbits a
quickly ionized, the information derived from the tange
dynamics of those can approximate the tangent dynamic
more complex nonionizing chaotic orbits for which we ca
not hope to have simple analytical formulas.

The section is designed to inspect some of the reso
orbits predicted by normal form theory using the informati
already at hand. The two guiding dynamical principles
s
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use are as follows: First, resonances with the minimal inte
multipliers are the most important. It is known in gener
@40# that the size of the resonance islands varies as
(2o), whereo is the order of the resonance. This solves t
paradox as to the infinite number of possible resonances
ones with a high order occupy an exponentially small area
phase space, which makes them very unlikely. The situa
is analogous to quantum mechanics, where there is alway
infinity of energy levels. Nevertheless, in practice only
very small finite number of lines are observed in laborato
experiments on earth. For example, in the Balmer ser
only the first twelve frequencies of the series can be obser
as emission lines in very diluted gaseous states@20,28#.
Since very high quantum states are too extended in sp
one needs very rarefied gases and large astronomical m
of gas to produce a measurable signal. We consider in
section only some of the resonances with minimal orderi
Second, we operate under the guiding heuristic principle
this extra complex constant, together with the other four c
stants of helium can stabilize the six degree of freedom
namics of helium for a time scale consistent with the em
sion of a sharp spectral line.

An approximation that we use in examining the resona
conditions is that we only include the correction to the fr
quency that comes with linear order, because this is the l
est correction for smallubu. Let us now consider the specia
case of helium: As we mentioned before, according to
Darwin Lagrangian, helium has always an angular mom
tumlike constant of motion and an energylike constant. In
neighborhood of some select circular orbits, another comp
analytic constant might exist, which could make those orb
nonlinearly stable. The constant we find here involves
amplitude of the normal mode corresponding to Eq.~18! in a
combination with normal modes along the plane. This is p
sible because these modes are coupled at higher orders i
oscillation amplitude. We do not want to involve the line
modes describing the circular instability in the first reson
term of the constant, but the amplitudes of the unstable m
will naturally appear in the higher monomials of the ser
for the constant~in agreement with the numerical knowledg
that a long-lived orbit is a finite perturbation of a circul
initial condition!. Besides, the circular pair~13! are complex
eigenvalues and would not satisfy a simple resonance co
tion in combination with the other real eigenvalues.

The circular orbit is a fixed point of the autonomous ve
tor field describing the dynamics in a system rotating w
the frequency of the circular orbit. To develop the norm
form about the fixed point, we must move to this rotati

frame. We recall thatn̄ is a frequency of oscillation, in units
of 2v, of the variational dynamics, according to Eq.~A1!. In
the rotating system, the new frequencies for oscillation alo
the plane are found by adding 1/2 to the formulas~14! and
~22!. The frequency~18! for thez oscillation is unchanged. A
new resonance condition involving the root~22! is the easiest
to be satisfied for small values ofubu. Therefore, we sugges
to look for a resonance among the frequencies of Eqs.~14!,
~18!, and~22!, which we rename asv1 , v2 , andv3 , respec-
tively, in the rotating frame, and which in the case of heliu
evaluate to
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v1[A2

7
.0.5345•••

v2[A31A32

28
.0.5560••• ~30!

v3[A12

7
ubu.1.3093ubu,

in units of 2v, and we have disregarded corrections prop
tional to y and ubu2. According to standard normal form
theory, the necessary condition to have an additional ana
@6,8# constant of the motion in the neighborhood of a fix
point is a resonance among the frequencies. By inspec
we find that a new quartic resonance involving the abo
three frequencies and with the minimal integer multipliers
of type

v12v212v350. ~31!

This resonance is satisfied forubu given by

ubu50.0082•••.

The Coulombian binding energy of a circular orbit in a tw
electron atom~kinetic plus potential! can be written asE5
2mc2ubu2. This energy, in atomic units, for the above val
of ubu is

E521.265 a.u.

Of course, other resonance conditions are possible: for
ample, we could put an integer number in the resona
condition, as in

v12v212nv350, ~32!

and the values ofubu satisfying this condition are given by

ubu5
0.0082

n
.

The discrete circular orbits corresponding to these value
ubu have binding energies given by

E52
1.265

n2
a.u.

In the next section we show how to construct the extra co
plex constant of the motion in a Maclaurin series~resonant
normal form! when condition Eq.~32! is satisfied.

The surprising fact that we were able to pick particu
circular orbits is a genuine signature of the nonlinear dyna
ics, because the linear eigenvalues depend on the circ
orbit through the parameterubu. The frequencies of the reso
nant orbits satisfying Eq.~32! are given by

v5
0.8101

n3
a.u.,
-

tic

n,
e
s

x-
e

of

-

r
-

lar

and the frequency of thez oscillation in the stable manifold
of the orbit can be obtained by multiplying the above fr
quency by 2A2/7, as of Eq.~18!

wz5
0.866

n3
. ~33!

Supposing that the dynamics in the neighborhood of
resonant orbits is stable, one could expect that oscillati
about this orbit could emit a sharp line. The only condition
emit a sharp line is to oscillate with the same frequency fo
long enough time~of the order of the inverse of the width o
the line!. This condition is fulfilled because of the finite tim
stability of the resonant orbit. Here we assume that the
quencies of Eq.~33! are an approximation to the sharp line
emitted by the orbit.

For the circular orbit corresponding to Eq.~33! with n
51, the frequency of thez oscillation in the stable manifold
is 0.7956 atomic units. The transition from the first excit
state of parahelium to the ground state (21P→11S) corre-
sponds to a frequency of 2.903722.123750.7799 atomic
units @33#, which is a 9% difference. Forn52, Eq. ~33!
evaluates to 0.1083 a.u., and the frequency for the trans
(31P→21S) in parahelium is 2.145922.0551
50.0908 a.u., which is again a 9% difference. Last,
asymptotic form of the quantum energy levels of heliu
@19#, both parahelium or orthohelium, is

E5
2Z2

2
2

~Z21!2

2~nr1L11!2
,

with Z52, which is a first approximation to the Rydberg
Ritz spectroscopic term@20#. The frequency of the line emit
ted by transitioning to the neighboring level, calculated fro
the above formula withDL51 is approximated by

w5
1

~nr1L11!3
.

This above equation is a quantum formula, which w
write just to compare with Eq.~33!. Notice that Eq.~33!
agrees with it to within 13%.

We can also produce an estimate for the width of the l
as follows: The third-order correction to the frequency of E
~28! (wz) is imaginary and with the same sign for the tw
values ofl. Therefore thez oscillation is stable and decay
with a coefficient that, according to Eq.~16!, is the imagi-
nary part of 2vl. For example, in the case of helium,Z
52, and f51/14, this imaginary correction to Eq.~33!
evaluates to

n5 i
64

49
ubu3v,

and this oscillation is then part of the stable manifold of t
circular orbit. Along this decaying oscillation, the perturb
circular orbit decays back to the perfectly circular spec
circular orbit. The radiative self-interaction has already be
shown to produce good approximations for the linewidth
other situations@27#. If we evaluate the above result for th
line at v50.7959 a.u., we find that it is 1.5 times the e
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perimental linewidth for this transition@33,34#. We stress
again that this is not exactly the probability of decay of t
orbit: As we already mentioned, the resonance condition~31!
is not satisfied with the inclusion of the third-order term
which implies that the constant of motion is destroyed. B
cause of this, the perturbed orbit can decay not only bac
the perfectly circular circular orbit, but also to the lowe
energy ground state. The dynamical linewidth would be
full probability to escape from the attracting resonance
gion of the stable orbit, and the calculation of this is beyo
the scope of the present paper, but since the damping o
oscillation is causing the decay, one would expect a num
of the order of this damping for the inverse of the linewid
which is again a good agreement, since we found 1.5 tim
the correct quantum result.

Let us briefly consider the case of the Li1 ion: The fre-
quencies of Eq.~30! can be easily recalculated for the case
Li1 by using the material of Secs. III and IV withZ53 and
f51/22. We find

v1[A 3

11
.0.5222•••,

v2[A51A60

44
.0.5382•••, ~34!

v3[A12

7
ubu.1.2792ubu,

and a simple resonance condition like

v12v21v350 ~35!

will determine the value ofubu to be

ubu50.0125.

The stable orbit has a Coulombian energy of

E522.932 a.u.

and the frequency of thez-oscillation mode is

wz51.97 a.u.,

again in very good agreement with quantum mechanics.
first two quantum energies of para-lithium Li1 @35# are
ground state, 11S:E527.278 a.u. and 21P:E5
25.30 a.u. The frequency of the dipole transition becom
w57.27825.351.978 a.u., in very good agreement wi
our above value ofwz ~within 1%!. Notice that this time we
started the resonance condition withn51 instead ofn52 as
for helium, and this is a so far mysterious selection rule. T
is another place where our heuristic criterion is incomple
We could have tried to obtain this information from the si
of the next term in the normal form~as discussed in Appen
dix D!. We should get back to this heuristic criterion wh
more information is known about exact numerical results
electrodynamics with retardation for the two-electron ato

To summarize this section, the heuristic criterion can le
us to a surprisingly good agreement for energies, frequen
,
-
to

e
-

d
he
er
,
s

f

e

s

s
.

f
.
d
es

of sharp lines, and linewidths. The frequencies obtain
agree better than the energies and some selection rule
the stability are missing.

VII. DISCUSSION AND CONCLUSION

Historically ~1912!, Coulombian many-electron atom
~‘‘saturnian atoms’’! were investigated by astronomers@32#
prior to Bohr, who was well aware of these studies. F
oscillations perpendicular to the plane of the orbit, the Co
lomb dynamics is stable and theratio of many lines obtained
by Nicholson for perpendicular oscillations agreed with t
spectra of the Orion nebula and the Solar corona@32#. Of
course Nicholson was assuming a special radius for the
bits, which he did not know how to calculate, and this rad
would disappear when one took the ratio of two lines of t
stable manifold of an orbit. This is a manifestation of t
scale invariance of the Coulomb dynamics~namely: all the
frequencies in the tangent dynamics are pure numbers ti
the orbit’s frequency!. Bohr was originally favorable to the
use of ordinary mechanics to describe those stable per
dicular oscillations@28#. For oscillations along the plane o
the orbit, Nicholson first found the now well-studied Co
lombian radial instability@2,23#, which was then a hindranc
for the theory@28#. It is of historical interest to stress that
was the radial instability that first motivated Bohr to post
late a discrete set of special, more stable orbits, which pro
to be a very fruitful intuition@28#. The original critic of Bohr
@28# to Nicholson@32#, was that the circular instability would
make the atoms too ‘‘fragile’’ to disintegration, and unab
to emit a sharp line. This led Bohr to conjecture that, alo
some special stable orbits, some ‘‘quantum’’ mechani
would supersede normal mechanics and prevent the ra
instability @28#.

As regards where the circular orbits ultimately decay
we conjecture that the lowest energy bound state in hel
could be a ‘‘nonmechanical’’ orbit of symmetric collinea
motion. This orbit has zero angular momentum and z
electric dipole moment. The avoided three-body collisi
can be provided by a singular mechanism analogous to
of Eliezer’s theorem for hydrogen@30,31#. In isolated atomic
hydrogen with self-interaction, Eliezer’s theorem predic
that the electron will never fall onto the proton. This counte
intuitive result is closely related to the fact that one has
ways dipole radiation in atomic hydrogen. The symmet
colinear motion in helium is not radiating in dipole, an
therefore one could expect a physical solution, differen
from the case of hydrogen@31#. It is intersting to compare
these possible zero-angular-momentum singular solution
the divergent series of the Lamb shift@19,20# in quantum
mechanics. The Lamb shift appears in quantum mecha
because of a singular interaction with the electromagn
field and is only pronounced for states of zero angular m
mentum @19,20#. In the dynamical approach, the solution
with zero angular momentum and zero dipole will be no
mechanical colinear orbits that get very close to the nucle
This in turn causes the Page series to diverge or to
asymptotic at the best~by analogy, one should call this th
‘‘dynamical Lamb shift’’!.

A recent use of resonances in perturbation theory wo
mentioning here was on the problem of the time of stabi
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of integrable tori. Here one exploits the resonances am
the unperturbed frequencies@39,43#. Those results go unde
the name of Nekhoroshev bounds for Arnold Diffusion. Si
ply stated, the results say that the actions of ane-perturbed
Hamiltonian system are kept approximately constant fo
time of the order of

T.~1/e!exp~@1/e#a!,

wherea[1/d andd is the maximal number of unperturbe
frequencies linearly independent over the rationals@29,41#.
Every time there is a resonance among the frequencies,d is
reduced and the torus has an exponentially longer time
stability. This phenomenon is named ‘‘stability by res
nance’’ @41#. In connection with these modern Arnold diffu
sion results, it is interesting to mention that they shone n
light on the old problem of the ultraviolet catastrophe, whi
was the historical motivation for Plank’s hypothesis@29,42#.
Today, also many numerical results exist showing that a
of coupled oscillators might never reach equipartition@43#,
the reason being a superslow Arnold diffusion.

As regards further research to be done, we have only b
able to study the circular stationary orbits, and it would be
much interest to study the linear stability of general elliptic
stationary orbits. Along elliptical orbits one can still us
regular perturbation theory, in the same way used for circu
orbits here, but now the parametric problem associate
much more complicated. It might be that the use of
Kustanheimo transformation@44,45# to regularized coordi-
nates will simplify the problem of elliptical orbits. For zero
angular-momentum collinear orbits, it might be necessar
introduce the retardation effects in a nonperturbative w
~Because the page series will divenge.!

One would expect some discussion about spin: Notice
our simplified dynamical system is based on classical po
like charges with no spin. Of course, we could include s
in the dynamics in a phenomenological way, similar to t
usual way it is introduced in quantum mechanics. We h
not done that yet. Second, quantum mechanical spin
relativistic effect and introduces a correction comparable
the second-order retardation correction@19,20#. As a matter
of fact, the Breit operator for helium is actually produc
starting from the Darwin Lagrangian@19,20#. We believe
that a correct discussion of spin issues can only be m
after we know more details about our dynamics, such as
frequency correction due to motion along resonance isla
and etc.

As a summary, we presented a complete account of
linear stability of a two-electron atom along circular orbits
the presence of retardation and self-interaction. We ca
lated all the linear eigenvalues up to third order inv/c. We
considered the necessary condition for a resonant con
and showed how to construct this extra analytic const
From the condition of the resonant normal form we derive
heuristic criterion to determine the energy of the survivi
resonant orbits. We also found that the frequency of
sharp lines in the tangent dynamics of stable orbits ag
well with the frequencies in the spectrum of helium. We
not know of prior results on the existence of these sta
electromagnetic orbits, which appear as a genuine effec
the nonlinear dynamics prescribed by Maxwell’s electrod
g
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namics to atomic physics. We have barely touched the st
of this dynamical system, and much research remains to
done.
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APPENDIX A: FLOQUET ANALYSIS

The linearization of the Coulombian equations of moti
produces a time-dependent linear equation with coefficie
periodic in time with period 2v. If the Floquet exponents ar
all nondegenerate, one can find a complete set of solution
the linearized dynamical equations in the form@36–38#

dxa5exp~2ivmt !(
n

xn
aexp~2invt !,

dx15exp~2ivmt !(
n

xn
1exp~2invt !, ~A1!

dx25exp~2ivmt !(
n

xn
2exp~2invt !,

where the Floquet exponentm is a complex number define
in the first Brillouin zone,21/2,Re(m),1/2. From now
on, an upper index should not be confused with an expon
and takes valuesa, 1, and 2 to label the nucleus, electron
and electron 2, respectively. Notice that for the Floquet co
ponents we use an upper index, but to label coordinate
functions of time, as in Eq.~7!, we use a lower index~to
distinguish it from the Floquet components!. To bring the
variational equations to normal form, we define the coor
nates

jn
k[

1

A2
~xn

k2 iyn
k!, xn

k[
1

iA2
~xn

k1 iyn
k!,

where again the upper index is not to be confused with
exponent, and takes the valuesa, 1, and 2. Next we calculate
Hill’s secular determinant@36#, which reduces to the evalu
ation of a 636 determinant in this case of circular orbits. A
a simplification, let us definen̄[n1m to be the running
variable in the summations of Eq.~A1!. Notice thatn̄ defines
a frequency of linear oscillation in units of 2v, as of Eq.
~A1!. Last, to introduce the physical intuition in the proble
and explore the symmetries, it is convenient to define
coordinatesxr andxd as

xr[x11x222xa ,
~A2!

xd[x12x2 ,

respectively, which introduces two new letters,r and d, to
appear as labels. In helium, (Z52), the coordinatedxr is the
dipole moment, and a nonzero amplitude for this variat
will always mean that the normal mode radiates in dipo
The dynamics of thedxd variation is decoupled from thedxa
anddxr variations about circular orbits. Before we write th
equations, we need still another definition
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Un
k[

1

A2
jn21

k 1
i

A2
xn11

k ,

~A3!

Vn
k[

2 i

A2
jn21

k 2
1

A2
xn11

k .

It is convenient to think of the quantitiesUn
k andVn

k as the
x andy components of a two-dimensional vectorKn

k . At this
point one should take a look at Appendix B, where we wr
the variation of the useful functional forms in terms of t
vector Floquet components. Let us start by considering va
tions along the plane of the orbit. Using the results of A
pendix B, the planar variational equations of Eq.~7! can be
written most simply in terms of the Floquet components
Eq. ~A1! as

24n̄2xn
d2

1

2
~xn

d13Kn
d!50,

24n̄2xn
a14Zf~xn

r 13Kn
r !/%50, ~A4!

24n̄2xn
r 24ZfS 11

2

% D ~xn
r 13Kn

r !50,

where% is defined as the ratio of the mass of the nucleus
the electronic mass. For example, in the case of helium%
'7344. For the Coulomb dynamics only, also the last eq
tion of ~A4! depends only on the radiation coordinate. It
good to have a scheme in mind to keep track of what
have done so far: Eq.~A4! is the variation of Eq.~7! divided
by Mev0

2 , which we write schematically as

MdA~0!2dF~0!

Mev0
2

50.

In Sec. IV we consider the variation of the relativistic co
rections to the acceleration, which we calldMA(2), and the
Page series second order force, which we calldF(2). The
equations of motion will then be written schematically as

MdA~0!2dF~0!

Mev0
2

1
dMA~2!2dF~2!

Mev0
2

1•••50.

In this way, we keep adding higher-order matrices and c
culating Hill’s secular determinant up to an order. Since
will be adding the matrices, it is necessary to keep so
convention about the order in which the equations app
The convention is that we always repeat what we did in
~A4!, that is, first the equation of motion fordxd divided by
Mev0

2 , then the equation of motion for thedxa divided by
Mav0

2 and then the equation fordxr divided byMev0
2 .

We recall thatn̄5n1m, and there is one equation fo
every value ofn. In principle this would lead to an infinite
Hill’s secular determinant, which is the case for an ellip
periodic orbit. For the case of circular orbits, when we go
the j and x variables, we find that thejn variables couple
only to xn11 and vice versa. This is obtained by taking line
combinations of thex and y components of the vectoria
a-
-

f

o

-

e

l-
e
e
r.
.

r

equations~A4!, a procedure that we call ‘‘unvectorizing.’
We developed this convenient mnemonic method of ske
ing the calculation to avoid making mistakes in an otherw
lengthy algebra~even though we did it with the symboli
manipulator Maple!.

APPENDIX B: VARIATION OF THE COULOMB
INTERACTION

In this Appendix we calculate the variation of the term
appearing in the Page series, Eq.~2!. To obtain the variation
of the Coulomb force along the plane of the orbit, one has
evaluate

dS x

uxu3
D 5

dx

r 3
2

3~xdx1ydy!x

r 5
, ~B1!

where r 5uxu and (dx,dy) are the functions of time repre
senting the variation about the circular orbit

x56r cos~vt !, y56r sin~vt !. ~B2!

Substituting Eq.~B2! into Eq. ~B1! we obtain

dS x

r 3D
n

5$dx2 3
2 @11cos~2vt !#dx2 3

2 sin~2vt !dy%n ,

dS y

r 3D
n

5$dy2 3
2 @12cos~2vt !#dy2 3

2 sin~2vt !dx%n ,

~B3!

where the subscriptn indicates thenth Floquet component
Using Eq.~A1! we find (dx)n5xn and (dy)n5yn and

dS x

r 3D
n

52
1

2r 3
~xn13Un!,

~B4!

dS y

r 3D
n

52
1

2r 3
~xn13Vn!,

where we have usedUn andVn as defined by Eq.~A3!. An
economic way to write this equation is

dS x

r 3D
n

52
1

2r 3
~xn13Kn!.

When we consider the second-order terms of the Page s
and the relativistic correction of the mass, we need to eva
ate the variation of many other functions besidesx/r 3. This
is done in Appendix C, in a way analogous to the abo
calculations. Last, along thez direction the variation is sim-
ply

dS z

r 3D 5
dz

r 3
.
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APPENDIX C: VARIATION OF THE SECOND-ORDER
FORCES

In this Appendix we consider the terms of order (v/c)2 in
the force. One contribution comes from the first relativis
correction to the electronic masses~the a particle is at rest!.
The x component of this term is

dMeax
~2!5

Me

c2
d~ ẋ• ẍ!ẋe1

Me

2c2
d~ uxeu2ẍe!.

Substituting the equation for a circular orbit, we find

~dMeax
~2!!5

Mev
2

2
ubu2F @22cos~2vt !#

d ẍe

v2
2sin~2vt !

d ÿe

v2

12S sin~2vt !
d ẋe

v
2cos~2vt !

d ẏe

v
D G .

Using the above equation, equation~A1! for dx and defini-
tion ~A3! for Un andLn we obtain the Floquet component

~dMeax
~2!!n5Mev

2ubeu2~24n̄2xn
e12n̄2Un

e12inV̄e!.

They component can be calculated in an analogous way
write the two components in a concise vector form we defi
an extra useful vector quantity

K̃n
e5F Vn

2Un
G .

This quantity is obtained from the vectorK @defined just
below Eq.~A3! by exchanging the components and chang
the sign of the second component#. Making use of the above
we write the relativistic second-order force as

~dMea
~2!!n5Mev

2ubeu2~24n̄2xn
e12n̄2Kn

e12i n̄K̃e!.

Using a procedure analogous to the above, we can obtain
variation of the second-order electric interaction of Eq.~2!.
First, the variation of the second-order electric field produc
by the electron at the pointp on the observation pointo is
calculated. The vector pointing from the electron to the po
p ~where another particle is! is x5xk2xe (k designates the
other particle!. In all cases of interest we havex52gxe . It
is easy to verify that for electron-proton interactiong51 and
for electron-electron interactiong52. According to Eq.~2!,
the variation of the electric field is proportional to the pro
uct of the charges times

dS ubeu2x

2r 3
2

ḃe

2rc
2

~n•ḃe!n

2rc2 D
n

5
ubeu2

2r 3 H S g21

2 D ~xn13Kn!

12n̄2g2~xn
e1Kn

e!14n̄2S r

RD 2

xn
e22ign̄~ x̃n

e2K̃n
e!J ,

~C1!
o
e

g

he

d

t

wherer is the interparticle distance andR the radius of the
electronic orbits. The tilde overx means the vector obtaine
from x by exchanging the components and changing the s
of the second component.

x̃n
k5F yn

k

2xn
kG ,

where again the superscriptk can take the values 1, 2,a, r,
and d, to represent a particle’s coordinate or a combinat
of the coordinates, as defined in Eq.~A2!. The second-order
electric field produced by the nucleus on each electron is

2
2e2ubu2n̄2

R3
~3xn

a1Kn
a!,

the same for the two electrons. Last, we calculate the va
tion of the second-order magnetic forces. Thea particle is at
rest and does not produce any magnetic field. The two e
trons produce a magnetic field at the center of the orbit,
the Lorentz magnetic force over the nucleus is

~dFM
a !n52

4Zie2v l z

Mec
2R3

n̄x̃n
a ,

wherel z is thez component of the angular momentum of o
electron. The variation of the electron-electron magne
force done by electron 2 over electron 1 is

~dF21!n5
e2ubeu2

r 3
$2i n̄~2x̃n

e12 x̃n
e21K̃n

e2!2~xn
d1Kn

d!%.

~C2!

For the force done by electron 1 over electron 2 just int
change the indices and the sign in front ofxn

d andKn
d .

APPENDIX D: CONSTRUCTION OF THE EXTRA
COMPLEX CONSTANT OF MOTION

To construct the resonant normal form, it is again con
nient to move to the rotating system. For this section
disregard the acceleration of the nucleus, so thatxa50. It is
also convenient to use the Hamiltonian formalism associa
with the Darwin Lagrangian, written in terms of the coord
natesxr and xd , as defined by Eq.~A2!, and the conjugate
momentapr and pd . We make a last transformation to th
normal mode coordinates of the Jacobian matrix about
fixed point corresponding to the circular orbit. Letui , i
51, . . .,12, be the coordinates corresponding to the norm
modes of frequenciesv i , i 51, . . .,12, respectively. These
coordinates will be complex-valued linear functions of t
coordinates and momenta. Because of the simplectic sym
try, the eigenvalues exist in pairsv and2v @40#. We order
the modes such thatu122 i is the coordinate corresponding t
the frequencyv122 i52v i . Because there are six coord
nates and six conjugate momenta, we have twelve nor
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coordinates. For example, the normal mode solution for
coordinateu1 will be given by

u1~ t !5u1~0!exp~ iv1t !,

and so on for the other coordinates. We define these coo
nates to describe the linearization about the fixed point c
responding to the circular orbit, so that at the circular or
all coordinates are zero.

We want to find an extra constant with an analytic for
which implies it has a formal Taylor series about the fix
point ~not necessarily convergent!. For instance, the intege
powers appearing in this Taylor series are the cause of
integer numbers in the necessary resonance condition@8#.
Before we go on, let us introduce some definitions to s
plify the exposition: Because we consider a Maclaurin
pansion of the constant of motion, some notation concern
monomials is in place: We write a monomial in the coor
natesuj , j 51, . . . ,12 as

Uk[u1
k1u2

k2
•••u12

k12,

where k is a twelve-dimensional vector of integer comp
nents. For example, if thei th coordinate is not present in th
monomial, thenki50. We use the convention that whenki is
negative, the coordinate to be used is the complement ofki to
12 with the positive power (k122 i52ki). For example,

u1~ t !21[u7~ t !,

and so on for all the other coordinates. Mode 7, by definiti
has a frequency that is the negative ofv1 . With this convec-
tion, even though we are working with negative integers,
the powers of the coordinates in the series for the cons
are positive, as it should for any good Taylor series.

Let us define the order of a monomial by

o5uk1u1uk2u1•••1uk12u,

and the frequency associated with a monomial as

Dvk5k1v11k2v21•••1k12v12.

The necessary condition for the existence of the extra a
lytic constant is that some resonance condition must be
isfied among the linear eigenvalues. In the following w
show how to construct the constant starting from a lead
resonance@4–6,8#. Let us assume that a resonance defined
k0 exists

Dvk0
50. ~D1!

Our proposed analytic constant must have a formal Mac
rin series expansion given by

C5(
k

CkU
k,
e

di-
r-
it

,

he

-
-
g

,

ll
nt

a-
t-

g
y

u-

where theCk are constant numbers. This is an analytic fun
tion by construction, because it involves only integer pow
of the coordinates. We now construct a constant where
lowest-order monomial is defined byk0 as of Eq.~D1!, plus
higher-order monomials necessary to vanish the time der
tive at higher orders. For example, if the resonance condi
~31! is our leading resonance, then we can construct a n
trivial analytic constant by starting the Maclaurin series w
k151, k851, k352, and k25k35•••5k1250, as of Eq.
~31!. To produce the successive powers of the constant, le
write the constant as

C5Uk01(
k1

Ck1
Uk11•••, ~D2!

where we have separated out the contribution of the lead
term at k0 , the contribution of the monomials of immed
ately next order, which we index withk1 , and the dots rep-
resent monomials of higher than immediately next orde
This is a complex-valued function, which means two re
functions of phase space. Of course, starting the series
the lattice vector2k0 will produce the complex conjugate o
the same function. Next we evaluate the time derivative
Eq. ~D2!.

The time derivative of the leading monomial produces
same monomial multiplied byDvk0

50, plus higher-order
terms, as

d

dt
~Uk0!5Dvk0

Uk01(
k1

Nk1
Uk11•••.

This monomial is then almost a constant, up to higher or
monomials. To produce the higher monomials of the co
stant, let us focus on one such term of immediately n
order, corresponding to a vectork1 and with coefficientNk1

.
The time derivative ofC is

dC

dt
5Dvk0

Ck0
Uk01(

k1

Nk1
Uk11•••1(

k1

Dvk1
Ck1

Uk1

1•••. ~D3!

It is easy to see that the next-order nonlinear contribution
the leading monomial to the time derivative can be cance
by choosing

Ck1
52Nk1

/Dvk1
.

It is well known that this perturbation scheme does n
produce a convergent constant, which is not a problem if
are investigating stability for a finite time scale. The usu
procedure is to terminate the series using some optimal t
cation @39#. This produces a quasiconstant for a long tim
scale, which still provides stability in the finite time for th
special orbits. The detailed investigation of this issue is
yond the scope of the present paper. Here we are ma
concerned with exploring the necessary condition for the
istence of such a constant.
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