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Electrodynamics of a two-electron atom with retardation and self-interaction
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We study the linear stability of a circular orbit in a two-electron atom, including retardation and self-
interaction effects. We calculate all the eigenvalues of the linear stability problem, expanded up to third order
in v/c. The retardation effects break the scale invariance of the Coulomb dynamics, and we discuss how this
manifests in the linear stability of simple circular orbits. For some discrete energies, the linear eigenvalues
define an extra resonant constant, which is important for the finite time stability of thg@xhitemission of
sharp spectral lings We compare the magnitudes of the resonant orbits to the quantum atomic results.
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[. INTRODUCTION interaction of a charged particle of very small radius is de-
scribed by the Lorentz-Dirac equation of motion, henceforth
The helium atom with Coulombian interaction is a proto- called LDE. This equation was first obtained in 1938 by
type of a nonintegrable dynamical system. A simple propertyDirac [10], using a covariant derivation without mention to
of the Coulomb interaction is its scale invariance; that is, thehe structure of the particle. Dirac was also the first to rec-
equations of motion are invariant under the scale transformasgnize and understand the runaway solutions of the LDE
tion t—Tt, r—Lr with T%L®=1. Due to the finiteness of [13]. In this work we consider the classical electrodynamics
the speed of light, if one includes the retardation of the Couof pointlike charges with a renormalized mass, as described
lomb interaction, the dynamical system is not scale invarianby the Lorentz-Dirac theorj11-13.
anymore. We have recently proposed that the retardation of Another late development of Maxwell's theory was the
the Coulomb interaction could stabilize some orbits of thework of Page(1918 [14] on the expansion of the Lmard
helium atom by the existence of an extra resonant normall898 and Wiechert(1900 formula. This formula is com-
form constant[1]. This resonant constant could delay the plicated because of the retardation constraint, and one way to
ionization time of some discrete orbits up to a time scaleconvert it into a useful differential equation is to develop the
consistent with the emission of a sharp spectral line. constraint in a Taylor series. This was done by Page up to the
In this paper we study in full the linear stability of a fifth order in 1918[14], who also explored this formula in
circular orbit of a two-electron atom with the inclusion of connection with self-interaction. We henceforth call the ex-
retardation and self-interaction. For the simple circular or-pansion of the Lieard-Wiechert interaction the “Page se-
bits, the stability analysis can be carried out analytically,ries.” Truncated to second order iric, the Page series de-
which is not the case of generic chaotic orbits. A circularscribes a Lagrangian interaction. This Lagrangian is the
orbit is one where the two electrons are in the same circulabarwin Lagrangian13,15—11, which introduces the first
orbit and in phase opposition, that is, along a diamf2¢r  retardation correction to the Coulomb dynamics. The Darwin
The center of the two-electron atom is supposed to have hagrangian is used in quantum mechanics to produce the
positive charge of valuEe (Z>1/4) and we henceforth call Breit operator, which is the generalization of Dirac’s relativ-
it the nucleus. The linearized dynamics about a circular orbitstic wave equation for two-electron atoms, correct to second
has one unstable direction, one stable direction, and ten neo+der inv/c [18,19. The Breit operator has been used suc-
trally stable direction§2]. For an infinitely massive nucleus, cessfully to describe the spin-orbit coupling and fine struc-
a two-electron atom has a six degree of freedom Hamiltoniature of helium[19,20. The third-order term of the Page se-
system with only four independent constants of mofi®d].  ries is dissipative, and of course not Lagrangian.
(Namely, these constants are the energy and the three com- The most studied case of a two-electron atom is the he-
ponents of the total angular momentyrBecause there are lium atom. The Coulomb dynamics of helium is not inte-
only four constants, the Coulombian dynamics in the neighgrable, because only three constants of motion in involution
borhood of a generic orbit can in principle be unstallilg  exist for the dynamick3,21]. This nonintegrability of helium
lack of constants and actually this dynamics is unstable appeared historically as a hindrance for the early quantiza-
about circular orbit$2]. Here we investigate if an extra reso- tion attempts of the Copenhagen schi@2]. Quite recently,
nant constant can exist in the neighborhood of a discrete sékecause of the renewed interest in periodic orbit quantiza-
of circular orbits. This extra constant resonant normal formtion, some few numerical studies already exist on the Cou-
(adelphic integral4]) requires a resonance to exigt-8], as  lomb dynamics of heliunf23,24. For example, it is now
we discuss in Appendix D. known that most orbits lead to the self-ionizati@jection of
Historically, the understanding of the electrodynamics ofone electrop after a long-term chaotic transient, for most
a charged particle interacting with its own electromagnetidnitial conditions[24].
field [9—13 came very late. A classical solution to the self- The introduction of the first retardation correction of the
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Coulomb interaction modifies the dynamics in a quantitative Some cautionary notes are in place before one starts
and in a qualitative way, as far as this work is concernedreading this paper: First, we are studying dynamics in the
The Darwin Lagrangian is rotationally invariant, which gen- neighborhood of a circular orbit, which is also a periodic
erates an angular-momentum-like constant of motion accord?rbit. One should not think though that our approach has
ing to Noether's theorerf21]. This constant is the angular anything to do with periodic orbit quantizatiof8]. It is
momentum of the electrons, with relativistic correction, plusknown that in general EBK cannot be applied to generic
the angular momentum of the electromagnetic field. There i§rbits of Coulombian helium because they are unstgble
also an energylike constaftiecause the Darwin Lagrangian Seconc_i, thg matgrlal in Sgc. Vi is heuristic or at thg best an
is time independeint These are small perturbations of the @PProximation aimed at introducing a few essentials of a
four constants of the Coulomb dynamics, and this is thePrave new dynamical system. ) .
guantitative change. The qualitative change is the existenc Th||s paper IS or_ga]rjlzed Ias f?”mévs' InmSec. . we_(cjilscur?s
of the extra resonant constant in the neighborhood of somg‘guli ;Cgrggﬁﬁ'i?et'(ﬁo&gpnu 3vsﬁicrr1] is %(:rder Z\I:/E?OC;‘nt?’:eeI;; :
orbits, and we stress that this is a genuine nonlinear effecg y P ' 9

b the f . £ the i ved d . ith eries formula. In Sec. IV, we discuss the inclusion of the
ecause the frequencies ol the inearzed dynamics With Ysq.,nq_order terms and consider the necessary condition for

tardation depend nonlinearly on the qrbit’s frequency. Thi_sthe resonant constant. In Sec. V we consider the influence of
extra constant appears only after one includes the retardatiqRg ragiative terms, in Sec. VI we compare our results to the

effects, which unfold the scale invariance degeneracy of theiomic results and in Sec. VII we put the discussions. In
Coulomb dynamics. In this sense, we have included the réappendix D we discuss the construction of the resonant nor-
tardation because it is absolutely necessary, and not to attama| form in an intuitive way for Comp|eteness_
some better precision.

In this paper we solve exactly a simple problem and we
then apply the results heuristically to understand the reso-

nance structure of complicated orbits. The exact simple prob- |n this work we include the self-interaction effects as de-
lem is the complete stability analysis of a generic circularscribed by the relativistic Lorentz-Dirac equatirDE) with
orbit, including retardation and self-interaction up to third a renormalized mag40—-13. The LDE equation for an elec-
order inv/c, which is done here in full detail for future tron of charge—e can be written in the convenient, nonco-
reference for a generic two-electron atom. We develop a sys+ariant form as

tematic method to handle the variational equations with in-

clusion of the retardation and self-interaction corrections. As )

a heuristic application of the linear problem we just solved, gt (YMeXe) ="+ Fex, (1)

we explore some of the very interesting resonant orbits about

which a resonant constant is possible. We show that a degen- .o ) ) )
eracy determines which eigenvalue enters the resonance cofff€re Xe is the electron velocityMe is the renormalized
dition to produce orbits in the correct atomic magnitude. Aelectronic masg11], and y=1/1/1—(|x¢//c)?. In Eq. (1),
few numerical experiments have convinced us that only fi+,,, iS the external force acting on the electron dhds the
nite perturbations of circular orbits can be stable for longradiation reaction force. For circular orbits, the lowest order

time scales. In view of this, our stability analysis can only beterm of I' in powers ofv/c is r:(292/3c3)')'(‘e_ The next
used as an approximation to the stability of these more comeorrection tol” is of order ¢/c)® for a circular orbit(see, for
plicated chaotic orbits. Even though it is a mathematlcallyexamme, page 116 of RdfL2] for an expansion

sound idea that a small resonant perturbation can radically \we now introduce, for later use, the expansion of the
change the topology of a long-lived orji25], we cannot retardation constraint of the irerd-Wiechert interaction
calculate analytically the resonance structure of such complithe Page seriegl4]). Let x be the position of a charge,
cated orbits. Further numerical and analytical work should beyng g its velocity vector divided byc. The formula for the

done to check the heuristic criterion provided by the resoglectric field caused by this chargeat a pointp is
nance condition and to obtain exact numerical quantities

such as frequency of sharp lines, etc. The comparison of the - 5 P : o
magnitudes of the resonant orbits to the quantum results pro- n o JB*=3(-pIn B (n-Bn

Il. ELECTROMAGNETIC FORMULAS

duces some astonishing agreement. This comparison imme- Ep=9 r2 +a 2r2 2rc 2rc
diately exposes the relevance of our heuristic approach to

atomic physics and suggests what further results should be 2q..

sought by use of rigorous nonlinear dynamics. The first strik- + §X+ T 2

ing coincidence is that our dynamical orbits have energies

around the correct atomic magnitudes and the emitted fre- R

guencies agree very well with some frequencies of the speavheren is the unit vector pointing from the charge to the
tra of helium and LT ion. The essential novelty in the work pointp, r is the distance from the chargefipand the ellipsis

is that we are discussing a dynamical system that can emitrepresents terms of order higher than 31ie. Notice that all
sharp line.(The other known case of emission of sharp linefunctions are evaluated at the present time. For a circular
is the simple linear systerf26]. To emit a sharp line, the orbit, the term of Eq.(2) inside braces is of order/(c)?
orbit must be stable in a time scale of somé 1@ns, the times the Coulomb term and the term with the third deriva-
type of stability that resonant normal form can provjde. tive of position is of order §/c)® times the Coulomb force.
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A detailed expansion, correct to fifth orderudtic, is calcu- against sharp lines in the one-electron system of the isolated
lated in[14]. The magnetic field caused by the chacgatp ~ hydrogen atom. The argument obviously does not apply for
has the following series: two-electron systems like the helium atom or the hydrogen
molecule, since those can have orbits with a zero dipole mo-
q R ment. For oscillations about circular orbits of helium, be-
B= —Z[Bx nj+---. 3 cause there is no dipole radiation, a sharp line can be emit-
r ted, provided the orbit is otherwise stable. The quadrupole
o ] ) ~ power radiated is of sizeHy/T)(v/c)®, whereE, is the
Th|S fII’St term is the Biot-Savart term and the next term |nCOu|0mbian energy Of the Orbit aﬂaits period_ Th|S power
the series would produce a force of fourth ordewfit and  times the linewidth tim&/(v/c)® results in an energy loss of
along the normal, and it is not important for the presente (v/c)3, which is consistent with a sharp variation of the
work. In this work we consider only the above terms of theemitted frequency.
electromagnetic interaction, and also consider the relativistic A word of caution should be said about the fact that terms
correction of Newton’s law for the electronic motion up to in the Page series of order higher than two represent a sin-
second order im/c. gular perturbation. Therefore, when one such term is in-
Let us now discuss electrodynamics with retardation andluded in the equations of motion, there will be solutions to
self-interaction in the special case of the helium atom: Wedhe equations that are not a perturbation of a mechanical
recall that the circular orbit is defined as one in which theCoulombian orbit. We call these solutions “nonmechani-
two electrons are in the same circular orbit but 180 degreesal,” as opposed to “quasimechanical” regular perturba-
out of phasd?2]. Along such an orbit, the total force acting tions. In this work we investigate only quasimechanical regu-
on electron 2 can be calculated using E2). and the self- lar perturbations of circular orbits. To state it clearly, we

interaction of electron 2 to be operate under the conjecture that there is always a nonrun-
away solution of the LDE in the neighborhood of conserva-
2e2 .. .. e2n tive orbits[29].
F= @(Xﬁ XZ)_7H(1_ 2181, (4) If one wants the most generic “stationary state,” where

the helium atom does not radiate in dipole, then one must

whereR is the radius of the circular orbit. In E¢4) we have have D= ?e(>'<'1+x2)=0 for all times. If we integrate the
also added the Coulomb attraction of theparticle and used conditionx; +x,=0 twice in time, we get
the approximation that the: particle is infinitely massive Y.+ X.=a+ bt 6)
and resting at the origin. If the two electrons are in the same e '
circular orbit but in phase opposition, the force along theThe constanb must be zero if the electrons are bound to the
velocity cancels ouffirst term on the right of Eq4)], dem-  center of force at the origin. One can show thahust also
onstrating that the cwcula}r orbit is a possible _perlodlc solupe zero as follows: Substitution of, + X,=a and X, + X,
tion of_ the electromagnetic equations up to thlrd order. =0 into the Coulombian equations of motion gives a poly-
Notice the appearance of the dipole term in E), nomial equation fom, anda=0 is the only solution to this
. o polynomial equation. Along orbits that satisfy E@) with
D= —e(X1+Xz). (5 a=b=0, the interaction between the electrons just renormal-
izes the charge of the particle. The most general “quasi-
The total far field caused by the three particles depends linmechanical” stationary orbit possible is then an elliptical
early on the quantityp, defined by Eq(5), up to quadrupole orbit, with circular orbits as a particular case. In this work we
terms. If this quantity is zero, the orbit is not radiating in do not consider elliptical orbits, which pose a more compli-
dipole. The fifth-order terms of the Page series force and theated parametric stability problem. The other kind of pos-
fifth-order relativistic correction to the Lorentz-Dirac self- sible stationary orbits are symmetric collinear motions of the
interaction introduce quadrupole effects. These effects woultivo electrons. These are orbits of zero angular momentum,
be important only in a much longer time scale, of orderwhich are also singular orbit€Coulombian solutions with
T/(v/c)®. In Sec. VI we show that the circular orbits decay zero angular momentum and zero dipole would fall onto the
in a time of the order off/(v/c)®. Therefore, the effect of nucleus. We discuss them briefly in Sec. VII.
guadrupole terms is small during the orbit’s lifetime. We  If one is not interested in nonmechanical orbits, it is con-
start the next paragraph by discussing this importance ofenient to truncate the Page series to third order and assume
guadrupole terms in detail. that the truncated system describes all the essential electro-
Throughout this paper, it is very important to keep indynamics and that the next terms only introduce a small
mind the orders of magnitude relevant to atomic physics. Fostochasticity. For nonmechanical orbits, such as zero angular
example, a typical value far/c is v/c~10"2. Typical val- momentum orbits, the Page series is not convergent and it
ues for the width of the spectral lines is of the order ofmight be necessary to keep all orders, like in Eliezer’s theo-
(v/c)®T, which is the inverse of a time to perform about rem[26,30,3]. In situations where the Page series is at least
10° turns along a typical orb{27]. In the classical model of asymptotic, the successive orders become important in suc-
the isolated hydrogen atom, because of dipole radiatiomessively longer time scales. For example, about a circular
losses, the energy loss during this linewidth time producesrbit of periodT, the second order terms produce deviations
dramatic changes in the frequency of rotation and therefore flom the Coulomb dynamics in a time of ord&f(v/c)?.
band of dipole radiation is emitted, not a sharp line, as isThe third-order terms take a timE/(v/c)® to influence the
discussed in26]. This is Bohr's[28] classical argument dynamics, and so on. In this work we consider the well-
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defined dynamical system obtained by truncating the Page 1
series interaction to third order, and we include the self- d)E(SZ——Z)'
interaction to third order in/c as well.
which specifies a generic two-electron atom.
lll. COULOMBIAN STABILITY OF CIRCULAR ORBITS Linearizing Eq.(7) about the circular orbi¢8), we obtain
a parametric linear differential equation with coefficients pe-
riodic in time and periodl = 7/ w, as we discuss in Appen-
ix B. The study of this time-dependent linear system fol-

In this section we consider the nonrelativistic Coulomb
dynamics of a two-electron atom in the neighborhood of
circular orbit. The plain Coulomb stability problem has al-

. . lows standard Floquet analysis, as described in Appendix A.
ready been considered t_>y many al_JthEQSSZ] using other It turns out, because of the symmetry of simple circular or-
approaches, and we do it our way in Appendix A to intro-

. . .~ .bits, that the linear eigenvalue problem involves only six
duce our perturbation scheme. The Coulomb interaction 'ls—loquet components ofgthe IinearFi)zation y

order zero of the Page seri€®, and the scheme we develop The resulting matrix equations are
allows for the inclusion of higher-order terms of the interac-

tion in an easy way. An alternative equivalent way to per- 1 —3i
form this calculation is to transform to a coordinate system - §+4n2 > d
rotating with the frequency of the circular orbit. In this sys- . n =0, (10
tem the circular orbit is a fixed point of an autonomous vec- 3i 1 - Xﬂﬂ
tor field, the Jacobian matrix is independent of time, and the 2 N §+4n+
parametric problem is replaced by a linear eigenvalue prob-
lem. The disadvantage is that one has to transform all thand
terms of the Page series to the rotating coordinates. We get _
back to rotating coordinates later on. -n? 0 Zpy 3iZ¢ &
Newton’s equations of motion for the Coulombian two- — Y o
electron atom are 4 0 -ni Siz¢ Z¢y Xn+1 —0
0 0 —(n?+A) —3iA én '
. Zé Ze? _ - r
Maxa=—3(x1—xa)+—3(x2—xa), 0 0 3iA —(nL+A)|LAXn+1
la 2a (11)
. 2 2 wheren, =n+1, y=(1/p), andA=Z¢(1+2y). Oncen is
MeXy = = =5~ (X17Xa) — R_s(XZ_Xl)’ (7) " calculated from the secular condition, we can recover the
La 12 Floquet multiplier » because any complex number can be
) 72 e? decomposed in a unique way as-n+ u with n an integer
MeXo= = —(Xa=Xo) =~ =5~ (X1 = Xp), and|Re(u)|<3. As explained in Appendix A, the six linear
2a Ri2 equations separate in blocks of two and four when we intro-

» ) duce the convenient radiation and difference coordinates. At
wherex, , X;, andx, are the position vectors respectively of this noint the reader should take a look in Appendix A to see
the nucleus, electron 1 and electronR,=|x1—X,|, Ria  the definition of the six Floguet components appearing in the
=[X1=X,|, and Ry,=|x;=X,|. In the special case of he- equations.(The 2x2 block depends only on the Floquet
lium, the nucleus is aw particle, but we will use the index ansform of the difference coordinates and the 44 block
« to label the coordinate of the _nucleus in the generic case afepends only on the Floquet transforms of the radiation and
well. The nucleus has an arbitrary chargeZ#, and the , particle coordinates.Notice that the secular problems of
electrons have chargee. The circular orbit periodic solu- (10) or (11) involve onlyﬁandﬁ+ —n+1. After we findn,

tion of Eq.(7) is this defines that the only two nonzero components are the

x,=0, y,=0, z,=0 nth and 1+ 1)th in Eq.(Al) for the normal mode oscilla-
“o T e tion. An eigenvector calculation should then follow to deter-
x;=Rcodwt), y;=Rsinwt), z,=0, (8) mine the ratio of these two Floquet components. o
Finally, let us solve Eq€10) and(11) for the rootsn. For
X,=—Rcogwt), y,=—Rsin(wt), z,=0. Eg. (10) the roots are
According to Eq.(7), the frequency of the orbit is related to n=-1,0-1/2—1/2.

R by
As regards the eight roots of E¢L1), four roots are 0,0,
—1,—1. From the general theory of linear ODE’s, at a

double root liken=0, the general solution is a “quasipoly-
nomial” linear function of time36]. The doubly degenerate
In this sectionw and wg are the same, but we will see later root n=0 is then responsible for the homogeneous transla-
on that because of higher-order correctiong,is only the tion solution with a constant velocity of the Coulombian he-
first term ofw in powers of ¢/c)?. To simplify the notation  lium. Evaluating the determinant of E¢(L1) and equating it
we define the quantity to zero, one finds that the other roots are given by

e2
=5 9

) 1
MewO: Z_ Z
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_ lie and a nontrivial solution requires=0,0 and
wheree is a solution of A=EV2A. (18)
. 1 ) 1 1 The linearz oscillation is decoupled from the planar os-
€+ ZA_E €+ Z_ZA Z+4A =0, (12  cillation, but of course it couples at higher orders in the
oscillation amplitudes.
frame rotating with the frequency of the circular orbit, the
e=1—-A+JA(9A-1). circular orbit itself is a fixed point of an autonomous vector

field. This vector field describes the Coulomb dynamics in
Inspection of the above formula shows that there is always ¢he rotating frame. One finds that the inclusion of the second
pair of roots with negative:®> and a real pair of roots. The order and radiative terms still yields an autonomous vector
pair with negativee? describes an instability, which was first field for the dynamics in the rotating frame. This is the rea-
found by Nicholsor}32] and in this work we refer to it as the son why we were able to simplify the parametric equation
Coulombian radial instability2,24]. This is an exponential down to a 6<6 linear system. In this rotating system one
growth in a time scale of the order of one cycle. The corre-also has to diagonalize a6 matrix (two plane coordinates
sponding roots are given by for each particlg and the exact same problem along the

direction.

——l+i\JA—1+A(9A—1), (13)
IV. INCLUSION OF SECOND-ORDER TERMS
wherei=\/—1. One also finds thafx, is not zero for the , , _ , ,
radially unstable mode, which implies that perturbations N this section we consider the inclusion of the second-
along this unstable mode radiate in dipole. We discuss som@der terms of the Page series and the second-order relativ-

consequences of this in Sec. V. The other two roots of Eqi'stic corrections to the electronic dynamics. It is known that
(12), with positive €? are approximated by the Lienard-Wiechert interaction truncated to second order in

v/c is described by the Darwin Lagrangifh3,15

n=—1+l-A+A(9A—1). (14) (

L parwin= 2

Notice that the quantity that appears in the paper of Poirier i

[2] is equal to 8 times ouA [A=Z(1+2y)/(8Z—2)] and

that we are including the dynamics of the nucleus as well. To 14 qiq;

recover the results of Poirier one should putO in our _5; i

definition of A.
Last, we consider the oscillations perpendicular to the 19

plane of the orbit, which we call the direction. In linear

order in the oscillation amplitude, this oscillation is decou-Where the indices take the values 1, 2, and ;=[x — x|,

pled from the oscillations along the plane. Starting from Eq.and ﬁij is the unit vector in the direction of;—x;. This

1 . 1 .
Emi|xi|2+ @mﬂxﬂ4

1 . . . A N
; (1_E[Xi'Xj+(xi'nij)(xj'nij)])y

(7), and linearizing about Ed8) we obtain Lagrangian depends only on the scalar product of the veloci-
) ties and the distance between the particles, therefore it is

824 invariant under a global rotation of all the particle’s coordi-

w—g +6z4=0, nates. By Noether’s theoref21], this generates an angular-

momentum-like constant of the motion associated with the
symmetry, which is equal to the mechanical angular momen-

i;—(82¢y) 57'=0, (15) tum plps a small functional correction of order/€)?, rep- '
w} resenting the angular momentum of the electromagnetic
field. Because the Lagrangian is time independent, there is

52, also an energy constant of the motion. This makes four in-

— +(8A)6z,=0. dependent constants of the motion. According&p for an

Wy extra (formal) analytic constant to exist, some extra reso-
nance condition must be satisfied by the linear frequencies.

The solutions to this linear problem are of type This extra constant is likely to be defined by a divergent
) series, which upon optimal truncation might provide an extra

6z,=C,exp(2i o). (16 quasiconstant for a finite time scale. In the following we
study the second-order correction of the Coulomb eigenval-

The first equation is a simple separate linear equation and t
solution to it withcy#0 requiresh=*=1/2. The next two
equations of Eq(15) become

es.
Let us start by correcting the frequency of the orbit as
given by Eq.(9). A given circular orbit is characterized by
the velocity| 8|, and from this one can calculate all the other
=0, (17) quantities of the orbit: angular momentum, frequency, and
radius. The Page series gives a correction in powefg|of

—4AN?  —8Z¢y
0 —4N2+8A

c

[e3

Cr
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and the first correction is of ordeg|?, as it should be for \which yieldsn= — 1+ (7+6¢)|8|?/16. Last, and crucial for
any relativistically invariant dynamicEL7]. Adding up the  yis \ork is the bifurcation of thev=—1/2 double root.
second-order magneti¢3) and second-order electri(2) bout n=,— 1/2, Eq.(21) becomes

forces acting on the electron along the circular orbit we findA T

the normal force —4(1+2n)2+6(1+2¢)|8/2=0,

e’n  |B.%e’n with roots

" 84R?  8R?
— 1 3(1+2
=—5=lAl \/(Td))- (22

Together with the second-order relativistic mass correction,

this determines the second-order correction to the frequencm i ) i
of Eq. (9) to be otice that the correction of the degenerate root in )
comes with alinear power of ||, differently from the
w2_w2[1+(¢—l)|ﬁ|2] simple roots, that are corrected only at ordigf? (exactly
— %o 2 .

because of this degeneracyhis root undergoes the fastest
. . . change of all for smalb/c, and one should expect it to be
A simple way to mtiude trls second-order frequency COMECine first to accommodate a “new” resonance condition. In
. . . 1 2 A . A
tion is to multiply n and n.. by [1+(¢4—35)[B]“] on the  the construction of a resonant normal form constant, this
zero-order matrices of Eqsl0) and (11) before adding the  fraquency allows the resonance condition to be satisfied with
other second-order matrices. At this point one should l0ok Ugne Jowest possible value B|. (In the same way explained
Appendix B, where we evaluate the variation of the secondy, gec. VI, one finds by inspection that resonances among
order terms of the Page series, as well as second-order relgaquencies corrected only at second order lead to relativistic

tivistic corrections. _ orbits, not very interesting for atomic physics.
Next we evaluate the second-order corrections of the ei- Next we calculate the second-order corrections of Eq.

genvalues. The algebraic manipulations were performed ug 1). Adding up all the second-order corrections to Etj),

ing a symbolic manipulator prograitMAPLE version 4.0.  second-order electric, second-order magnetic, second-order
Adding up the second-order electric field, second-order magrg|ativistic and correction of the frequency we find the fol-
netic force, the second-order relatistic correction for the elecioying matrix to be added to Eq11)

tronic masses and the correction to the frequency, we obtain

a perturbation to the matricg40) and (11). We write the (2—4 ¢)HZ 0 0 0
equation for the Floquet components, which separates in two
parts just like Eq.(A4) splits into Egs.(10) and (11). The 14l 0 (2—4¢)Hﬁ 0 0
resulting second-order correction to be added to(EQ). is R(M) is(n) T e
B2 P(n) iQx(n) |[ & 20 —iS(=ny)  R(-n,) —iW(=n,) T(-n,)
. — — d | "
—iQa(—ny) Py(—ny) [l Xn+1 &
where P,(M)=[(8¢—2)m2+8¢n+36/2], Qum=[(4¢ et (23
+2)(n?—n)+ ¢/2], andn,=(1+n). Let us first consider én
the correction in powers df3| of the roots of Eq(10). This Xni1

is done by adding up matric€40) and(20), and taking the - - - - -
determinant of the result. The result, up to second order ifvhere R(n)=-8(1+3¢)n’*+8¢n, S(n)=4(1— ¢)n?

18l, is +(2¢—4)n, T(n)=-2(1+8¢)n’+44n, and W(n)
— —, ) — =2(1-2¢)n°—2n, and we have left out terms proportional
16n(1+n)(1+2n)°+[B[{(7+6¢)+8(1-5¢)n to y=1/o. To calculate the corrections to the roots of Eq.

B — _ — = (11), we add Eq(23) to Eq.(11), take the determinant and
+8(3-13¢)n"+16(1-4¢)(2n"+n)}+ - -. equate it to zero. Adding E23) to Eq.(11) and evaluating
(21)  the determinant we obtain, up to second ordelrft,

In the neighborhood of the simple root=0 of (10), Eq.(2D) 25672(1+F)2 (F“+2ﬁ3+(1+2¢)ﬁz+22¢ﬁ
takes the form

_ —  — 9 Z 6Z¢\—
16n+(7+64¢)|B|?=0, +Z¢p—822¢%) +104| 8|4 n*+2n+ o5 —5¢)n2
which vyields F:_—(7+6¢)|,B|2/16. Analogously, in the _(i+5+ 5ch5)H
neighborhood oh= —1, Eq.(21) takes the form 10 5 3

—16(n+1)+(7+64¢)|82=0, +(—%22¢2+§¢22+§z¢+%2)”. (24)
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TABLE I. Corrections to the sixteen stable regular roatss 1/(8Z—2), andA=Z¢(1+2y).

Coordinate
involved Coulombian roots Corrected roots
ra A==*3 2-5¢
N=g 1| = )IBI2
(62%,62") A=0,0++2A 3 ) 64i ol 3
A=0,0,+v2A(1-35¢|B )+—Z¢> |8l
o n=0-1-%-% — 7+ 6¢ 7+ 6¢
== —|BI%—1+ ——|BI*, -3
3+6¢
N el
o r -
(ox7,0x) n=00-1-1, n=0,0-1-1,— 3+ i A+ A(9A—1)
-1
- *\i-A+A(9A-1) iC(Z)Iﬁ|2+id(Z)IBI3

Notice that according to E¢23) we still have the degenerate ~ This completes the calculation of the second-order correc-
roots atn=0 andn=— 1. An inspection in Eq(24) shows tion to all the Coulombian roots. In the next section we cal-
culate the third-order corrections, and Table | shows all the

hat from all the r iven Ed11), only n= ndn .
that from all the roots given by Eq11), only 0 and roots corrected to third order.

= —1 are still degenerate after the inclusion of the term in
| 8|2. We will not develop it here, but foy+0 these degen-
erate roots become simple roots and each other root 0 and \; |NCLUSION OF THE DISSIPATIVE THIRD-ORDER

—1 is corrected by terms proportional y$3|2. The roots of TERMS
Eq. (14) are nondegenerate and are corrected only at second
order as The terms of order higher than two in EQ) aresingular

in the sense that they introduce the third derivative, and bring

n=— 1+ \/A— 1+ VA(9A-1)*c(2)|BI2. (25 up a new solution to the dynamics. The next natural step in
the study of the stability of the circular orbit would be to

The functionc(Z) is a complicated function af, and we include the third-order terms in the calculation of the eigen-
give its value for the most interesting valuesZfnamely, values. In the following we calculate the third-order correc-

C(2)=0.15241,C(3)=0.11926, and_(4)=0.10126. tions, in a way analogous to the second order. Starting with
As regards the second-order corrections for oscillationghe third-order correction to E¢17), we find the third-order
along thez direction, the equation fofzy is changed to matrix
0Z4 256 2 0 O|lc
_JF52¢1+|,3|2 24’) —¢z4| =0, (ﬂ)\s)[ { @
o g 3 (2-2) 1||c |

and the roots are changed to
which describes the radiative correction to be added to Eq.

(17), in disregard of terms proportional y98|2. Solving the
perturbed secular determinant, we find that XheO double

root is preserved and the roots of E@8) are corrected to
In an analogous way, we find that the second-order correc-

tion to Eq.(17) is

(1 54
N=F51- (5——)|B|2

==\(2ZH)[1-3¢|B171+ FiZS%BI°, (29

5= qs) A2 0
FE ( {C“} (26) where again stands for the complex unit=+/—1.
12402 r Last, let us calculate the third-order corrections to Egs.
16| 22¢— a4~ ¢ % (10) and (11). Because of symmetry, one finds that there is

no third-order correction to Eq10). This is readily seen
Adding Eq. (26) to Eqg. (17), taking the determinant, and because the third-order variational force is the same for both
equating it to zero, we find that the=0 double root is electrons, being proportional to th¥, variation. The third-
preserved and the roots of Ed.8) are corrected to order correction to Eq11) can be calculated using the third
34 order of Eq.(2), in an analogous way we used for the second
w122 L2 order. We find the following matrix describing the third-
A== 22(75( 1 |8l ) @7 order correction to Eq(11):
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0 0 £ use are as follows: First, resonances with the minimal integer
0 0 0 o0 " multipliers are the most important. It is known in general
gBi 8183 N o Xn+1 [40] that the size of the resonance islands varies as exp
3 22=z)n® 0 2n® Of| £ | (—o0), whereo is the order of the resonance. This solves the
2(2—2)53; 0 Zﬁi 0| xC., paradox as to the infinite number of possible resonances: the

ones with a high order occupy an exponentially small area of
. ] phase space, which makes them very unlikely. The situation
Adding the above matrix to Eq11), add the second-order s analogous to quantum mechanics, where there is always an
equat|on(_23), and take t_he determinant. The result producesmﬁnity of energy levels. Nevertheless, in practice only a
a correction to Eq(24) given by very small finite number of lines are observed in laboratory
experiments on earth. For example, in the Balmer series,

3.
3= — M(l+ﬁ)2ﬁ2(l+ 2n)(n*+2n3+n? only the first twelve frequencies of the series can be observed
3 as emission lines in very diluted gaseous std23,28.
+Z¢F2+Z¢F+Z¢) (29 Since very high quantum states are too extended in space,

one needs very rarefied gases and large astronomical masses
i . — of gas to produce a measurable signal. We consider in this
From me above, It Is easy to see t.hat the-elge.nv S section only some of the resonances with minimal ordering.
—1/2,n=—1, andn=0 do not acquire any imaginary part gecond, we operate under the guiding heuristic principle that
at third order. It is also straightforward to add B89) as &  hjs extra complex constant, together with the other four con-
perturbation to Eq(11) and calculate the imaginary COITeC- giantq of helium can stabilize the six degree of freedom dy-

tlopr totiEg'i(M)f(tusmg t;e prr(])grtz:‘mwgPLEt).in'lt'h;e 'T?r?g'calry namics of helium for a time scale consistent with the emis-
correction is of typad(Z), a € Most INteresting values ;o of a sharp spectral line.

of d are d(2)=0.766, d(3)=0.740, andd(4)=0.731. In imation th . inina th
Table | we show all the corrections of the eigenvalues, in- An gpprqmmanont at we use in examlnlng.t € resonance
cluding order |2 correction. We only showed in Table | t’he conditions is that we only include the correction to the fre-

correction to the regular roots, by which we mean the oneduency that comes with linear order, because this is the larg-

that were already roots of the Coulomb dynamics. The intro €St correction for smalls|. Let us now consider the special

duction of the third order brings up nine more singular roots ¢@s€ Of helium: As we mentioned before, according to the
which we do not consider. Last, we did not show in Table [Darwin Lagrangian, helium has always an angular momen-
the unstable pair of eigenvaluésd) of the radial instability ~tumlike constant of motion and an energylike constant. In the
either, which are part of the 18 Coulombian eigenvalues bufeighborhood of some select circular orbits, another complex
are not interesting for resonance conditions. The fact that wanalytic constant might exist, which could make those orbits
left out the singular roots is consistent with the conjecturenonlinearly stable. The constant we find here involves the
stated in Sec. |l that there is always a conservative solutioamplitude of the normal mode corresponding to B®) in a

in the neighborhood of the exact nonrunaway solution of thecombination with normal modes along the plane. This is pos-
LDE [29]. As far as the next heuristic section goes, the verysible because these modes are coupled at higher orders in the
large singular linear frequencies would predict resonant orescillation amplitude. We do not want to involve the linear
bits only in the relativistic energy region, which is another modes describing the circular instability in the first resonant

reason to believe they are unphysical. term of the constant, but the amplitudes of the unstable mode
will naturally appear in the higher monomials of the series
VI. HEURISTIC CRITERION OF RESONANT ORBITS for the constan(in agreement with the numerical knowledge

that a long-lived orbit is a finite perturbation of a circular
initial condition). Besides, the circular paff.3) are complex
igenvalues and would not satisfy a simple resonance condi-

In this section we explore the orders of magnitude of
some of the orbits. Since the retardation of the Coulombia
interaction breaks the scale invariance of the equations % on in combination with the other real ei

. ) . : genvalues.

motion, one expects to find discrete stable orbits at some The circular orbit is a fixed point of the AULONOMOUS VEC-
particular order of magnitude, as a signature of this lack of ' L point : .
scale invariance. We explore here the resonance condition %%r field describing the dynamics in a system rotating with
a heuristic tool to predict the order of magnitude of thesé € frequency of the circular orbit. To develop the normal
stable orbits. Rigorous numerical integration should followform about the fixed point, we must move to this rotating
to prove this heuristic criterion. As a matter of fact, a fewframe. We recall than is a frequency of oscillation, in units
numerical experiments have convinced us that the most longf 2w, of the variational dynamics, according to E41). In
lived orbits are finite perturbations of elliptical orbit24].  the rotating system, the new frequencies for oscillation along
Even if infinitesimal perturbations of circular orbits are the plane are found by adding 1/2 to the formul24) and
quickly ionized, the information derived from the tangent (22). The frequency18) for thez oscillation is unchanged. A
dynamics of those can approximate the tangent dynamics afew resonance condition involving the rq@p) is the easiest
more complex nonionizing chaotic orbits for which we can-to be satisfied for small values f8|. Therefore, we suggest
not hope to have simple analytical formulas. to look for a resonance among the frequencies of E®,

The section is designed to inspect some of the resonarii8), and(22), which we rename a®,, w,, andws, respec-
orbits predicted by normal form theory using the informationtively, in the rotating frame, and which in the case of helium
already at hand. The two guiding dynamical principles weevaluate to
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2 and the frequency of the oscillation in the stable manifold
==0.5345 - - of the orbit can be obtained by multiplying the above fre-

quency by 2/2/7, as of Eq(18)

3++v32 0.866
wy="\/ Z\é_ =0.5560 - - (30 W,=———. (33)

n

W=

12 Supposing that the dynamics in the neighborhood of the
W3= \@|B|:1.3093/3|, resonant orbits is stable, one could expect that oscillations
about this orbit could emit a sharp line. The only condition to
emit a sharp line is to oscillate with the same frequency for a
long enough timdof the order of the inverse of the width of
o e the line. This condition is fulfilled because of the finite time
theory, the necessary condition to have an additional analyt'gability of the resonant orbit. Here we assume that the fre-

[6,8] constant of the motion in the neighborhood of a fixed : o ;
point is a resonance among the frequencies. By inspectioﬁIuenCIeS of Eq(33) are an approximation to the sharp lines
) €mitted by the orbit.

we find that a new quartic resonance involving the above For the circular orbit corresponding to E83) with n
three frequencies and with the minimal integer multipliers is SR .
a g P =1, the frequency of the oscillation in the stable manifold

in units of 2w, and we have disregarded corrections propor
tional to y and|B|2. According to standard normal form

of type is 0.7956 atomic units. The transition from the first excited
01— 0yt 203=0. (31) state of parahelium to the ground statetp2-11S) corre-
sponds to a frequency of 2.9032.1237%0.7799 atomic
This resonance is satisfied fp8| given by units [33], which is a 9% difference. Fon=2, Eq. (33)
evaluates to 0.1083 a.u., and the frequency for the transition
|8|=0.0082 - -. (3'P—2's) in  parahelium is  2.14592.0551

=0.0908 a.u., which is again a 9% difference. Last, the
The Coulombian binding energy of a circular orbit in a two- asymptotic form of the quantum energy levels of helium

electron atom(kinetic plus potentiglcan be written a&E= [19], both parahelium or orthohelium, is
—md?|B|2. This energy, in atomic units, for the above value

. 72 (2-1)?
of | 8| is E= -

2 2(n+L+1)%
E=-1.265 a.u.
with Z=2, which is a first approximation to the Rydberg-
Of course, other resonance conditions are possible: for exRitz spectroscopic terf20]. The frequency of the line emit-
ample, we could put an integer number in the resonanceed by transitioning to the neighboring level, calculated from
condition, as in the above formula witlAL=1 is approximated by

w,— wy+2nw3=0, (32 1

(n,+L+1)%

and the values offg| satisfying this condition are given by

0.0082 This above equation is a quantum formula, which we
|8|=— ) write just to compare with Eq(33). Notice that Eq.(33)
n agrees with it to within 13%.

) ) ] ) We can also produce an estimate for the width of the line
The discrete circular orbits corresponding to these values ofs follows: The third-order correction to the frequency of Eq.

|8| have binding energies given by (28) (w,) is imaginary and with the same sign for the two
values of\. Therefore thez oscillation is stable and decays

Eo_ 1.265 al with a coefficient that, according to E(L6), is the imagi-

N n2 nary part of 2o\. For example, in the case of heliurg,

=2, and ¢=1/14, this imaginary correction to Ed33)
In the next section we show how to construct the extra comevaluates to
plex constant of the motion in a Maclaurin serigssonant 64
normal form when condition Eq(32) is satisfied. v=i—|B|%w,
The surprising fact that we were able to pick particular 49

circular orbits is a genuine signature of the nonlinear dynam- . S .
ics, because the linear eigenvalues depend on the circulg‘lnd this oscillation is then part of the stable manifold of the

orbit through the parametég|. The frequencies of the reso- c!rcular orbi_t. Along this decaying oscillation, _the perturbed
nant orbits satisfying Eq32) ére given by circular orbit decays back to the perfectly circular special

circular orbit. The radiative self-interaction has already been
shown to produce good approximations for the linewidth in
a.u., other situationg27]. If we evaluate the above result for the
line at w=0.7959 a.u., we find that it is 1.5 times the ex-

~ 0.8101

@ 3

n
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perimental linewidth for this transitiof33,34. We stress of sharp lines, and linewidths. The frequencies obtained
again that this is not exactly the probability of decay of theagree better than the energies and some selection rules for
orbit: As we already mentioned, the resonance condi@@dn the stability are missing.

is not satisfied with the inclusion of the third-order terms,

which implies that the constant of motion is destroyed. Be-

cause of this, the perturbed orbit can decay not only back to VIl. DISCUSSION AND CONCLUSION

the perfectly circular circular orbit, but also to the lower-
energy ground state. The dynamical linewidth would be th%“
full probability to escape from the attracting resonance re- rior to Bohr, who was well aware of these studies. For

gion of the stable orbit, and the calculation of this is beyondqyjations perpendicular to the plane of the orbit, the Cou-
the scope of the present paper, but since the damping of g, 4y namics is stable and thatio of many lines obtained
oscillation is causing the_decay, one would expect a nqmbe(Sy Nicholson for perpendicular oscillations agreed with the
of the order of this damping for the inverse of the ImeW|dth,Spectra of the Orion nebula and the Solar corfda]. Of
which is again a good agreement, since we found 1.5 imegq, ;rse Nicholson was assuming a special radius for the or-

the correct quantum r_esult. e bits, which he did not know how to calculate, and this radius
Let_us briefly consider the case of theLion: The fre- would disappear when one took the ratio of two lines of the
quencies of EQ(30) can be easily recalculated for the case ofgi,pe manifold of an orbit. This is a manifestation of the
Li™ by using the material of Secs. Ill and IV wifh=3 and  scae invariance of the Coulomb dynamiggmely: all the
¢=1/22. We find frequencies in the tangent dynamics are pure numbers times
3 the orbit’s frequency Bohr was originally favorable to the
W= \/1:le.5222 e

Historically (1912, Coulombian many-electron atoms
saturnian atoms’} were investigated by astronomd2]

use of ordinary mechanics to describe those stable perpen-
dicular oscillationg28]. For oscillations along the plane of
the orbit, Nicholson first found the now well-studied Cou-

5+/60 lombian radial instability 2,23], which was then a hindrance
wy= =0.5382 - -, (34 for the theory[28]. It is of historical interest to stress that it
was the radial instability that first motivated Bohr to postu-
B late a discrete set of special, more stable orbits, which proved
w3= \/;|13|21_279313|, to be a very fruitful intuition[28]. The original critic of Bohr

[28] to Nicholson[32], was that the circular instability would
make the atoms too “fragile” to disintegration, and unable
to emit a sharp line. This led Bohr to conjecture that, along
some special stable orbits, some ‘“quantum” mechanism
would supersede normal mechanics and prevent the radial
instability [28].

As regards where the circular orbits ultimately decay to,

and a simple resonance condition like
w1~ wytwz=0 (35

will determine the value ofg| to be

|8|=0.0125. we conjecture that the lowest energy bound state in helium
could be a “nonmechanical” orbit of symmetric collinear
The stable orbit has a Coulombian energy of motion. This orbit has zero angular momentum and zero
electric dipole moment. The avoided three-body collision
E=-2.932 a.u. can be provided by a singular mechanism analogous to that
of Eliezer’s theorem for hydrogdi30,31]. In isolated atomic
and the frequency of theoscillation mode is hydrogen with self-interaction, Eliezer's theorem predicts
that the electron will never fall onto the proton. This counter-
w,=1.97 a.u., intuitive result is closely related to the fact that one has al-

ways dipole radiation in atomic hydrogen. The symmetric

again in very good agreement with quantum mechanics. Theolinear motion in helium is not radiating in dipole, and
first two quantum energies of para-lithium "Li[35] are  therefore one could expect a physical solution, differently
ground state, IS:E=-7.278 au. and YP:E= from the case of hydrogef81]. It is intersting to compare
—5.30 a.u. The frequency of the dipole transition becomeshese possible zero-angular-momentum singular solutions to
w=7.278-5.3=1.978 a.u., in very good agreement with the divergent series of the Lamb shift9,2Q in quantum
our above value oiv, (within 1%). Notice that this time we mechanics. The Lamb shift appears in quantum mechanics
started the resonance condition witk 1 instead oh=2 as  because of a singular interaction with the electromagnetic
for helium, and this is a so far mysterious selection rule. Thidield and is only pronounced for states of zero angular mo-
is another place where our heuristic criterion is incompletementum[19,20. In the dynamical approach, the solutions
We could have tried to obtain this information from the signwith zero angular momentum and zero dipole will be non-
of the next term in the normal forrfas discussed in Appen- mechanical colinear orbits that get very close to the nucleus.
dix D). We should get back to this heuristic criterion when This in turn causes the Page series to diverge or to be
more information is known about exact numerical results ofasymptotic at the begby analogy, one should call this the
electrodynamics with retardation for the two-electron atom. “dynamical Lamb shift”).

To summarize this section, the heuristic criterion can lead A recent use of resonances in perturbation theory worth
us to a surprisingly good agreement for energies, frequencigsentioning here was on the problem of the time of stability
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of integrable tori. Here one exploits the resonances amongamics to atomic physics. We have barely touched the study
the unperturbed frequenci€39,43. Those results go under of this dynamical system, and much research remains to be
the name of Nekhoroshev bounds for Arnold Diffusion. Sim-done.

ply stated, the results say that the actions ofegrerturbed

Hamiltonian system are kept approximately constant for a ACKNOWLEDGMENT

time of the order of . ) ) )
| acknowledge discussions with R. Napolitano.

T=(le)exp[lle]?),
( ) q[ ] ) APPENDIX A: FLOQUET ANALYSIS

wherea=1/d andd is the maximal number of unperturbed  The linearization of the Coulombian equations of motion
frequencies linearly independent over the ratiojid8,41.  produces a time-dependent linear equation with coefficients
Every time there is a resonance among the frequendi&s, periodic in time with period &. If the Floquet exponents are
reduced and the torus has an exponentially longer time ddll nondegenerate, one can find a complete set of solutions to
stability. This phenomenon is named ‘“stability by reso-the linearized dynamical equations in the fof&6—39
nance”[41]. In connection with these modern Arnold diffu-
sion results, it is interesting to mention that they shone new
light on the old problem of the ultraviolet catastrophe, which
was the historical motivation for Plank’s hypotheg2®,42,.
Today, also many numerical results exist showing that a set
of coupled oscillators might never reach equipartitjds], Sx=exp(2iout) X, xexp2inwt), (A1)
the reason being a superslow Arnold diffusion. "

As regards further research to be done, we have only been
able to study the circular stationary orbits, and it would be of SX,=exp(2i w,ut)z xﬁexp(Zinwt),
much interest to study the linear stability of general elliptical n
stationary orbits. Along elliptical orbits one can still use . '
regular perturbation theory, in the same way used for circuIaY"here the FIo_quet_ exponept is a complex number defined
orbits here, but now the parametric probiem associated i the first Brillouin zone,—1/2<Re(u)<1/2. From now
much more complicated. It might be that the use of theON: an upper index should not be confused with an exponent,
Kustanheimo transformatiofé4,45 to regularized coordi- 2and takes values, 1, and 2 to label the nucleus, electron 1,
nates will simplify the problem of elliptical orbits. For zero- @nd electron 2, respectively. Notice that for the Floquet com-
angular-momentum collinear orbits, it might be necessary t@ON€NtS we use an upper index, but to label coordinates as
introduce the retardation effects in a nonperturbative wayfunctions of time, as in Eq(7), we use a lower indexto
(Because the page series will divenge. distinguish it from the Floquet componentdo bring the

One would expect some discussion about spin: Notice thayariational equations to normal form, we define the coordi-

our simplified dynamical system is based on classical pointDat€s

like charges with no spin. Of course, we could include spin

in the dynamics in a phenomenological way, similar to the £ Ei(xx_iyx) XKEL(XKHyK)

usual way it is introduced in quantum mechanics. We have N A A o e

not done that yet. Second, quantum mechanical spin is a

relativistic effect and introduces a correction comparable tovhere again the upper index is not to be confused with an
the second-order retardation correct{d®,20. As a matter exponent, and takes the values1, and 2. Next we calculate
of fact, the Breit operator for helium is actually produced Hill's secular determinant36], which reduces to the evalu-
starting from the Darwin Lagrangiall9,20. We believe ation of a 6<6 determinant in this case of circular orbits. As

that a correct discussion of spin issues can only be madg simplification, let us defineTEn+M to be the running

after we know more details about our dynamics, such as thgjape in the summations of E¢AL). Notice thatn defines
frequency correction due to motion along resonance |sland§ frequency of linear oscillation in units ofe2 as of Eq.

and etc. g | ¢ p{AD. Last, to introduce the physical intuition in the problem
i As a sgl'lmmafry, we plresente a colmp etg aclcounép ,t nd explore the symmetries, it is convenient to define the
inear stability of a two-electron atom along circular orbits in coordinates, andxy as

the presence of retardation and self-interaction. We calcu-

X, =exp(2iwut) X, xpexp2inwt),
n

lated all the linear eigenvalues up to third ordewift. We X, =X1+Xo— 2X,, ,
considered the necessary condition for a resonant constant (A2)
and showed how to construct this extra analytic constant. Xg=X1— Xo,

From the condition of the resonant normal form we derived a

heuristic criterion to determine the energy of the survivingrespectively, which introduces two new lettersand d, to
resonant orbits. We also found that the frequency of theappear as labels. In heliunZ €2), the coordinat&x, is the
sharp lines in the tangent dynamics of stable orbits agreedipole moment, and a nonzero amplitude for this variation
well with the frequencies in the spectrum of helium. We dowill always mean that the normal mode radiates in dipole.
not know of prior results on the existence of these stablé'he dynamics of théxy variation is decoupled from théx,,
electromagnetic orbits, which appear as a genuine effect aind 6x, variations about circular orbits. Before we write the
the nonlinear dynamics prescribed by Maxwell's electrody-equations, we need still another definition
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equations(A4), a procedure that we call “unvectorizing.”

1 i
Uk= ngfﬁ Txgﬂ, We developed this convenient mnemonic method of sketch-
2 2 ing the calculation to avoid making mistakes in an otherwise
(A3)  lengthy algebraleven though we did it with the symbolic
1 manipulator Maplg

=i
VKE _§K7 _ _XK .
n \/E n-1 \/E n+1
APPENDIX B: VARIATION OF THE COULOMB
It is convenient to think of the quantitié$; andV as the INTERACTION
x andy components of a two-dimensional vectof . At this
point one should take a look at Appendix B, where we W“teappearing in the Page series, E2). To obtain the variation

the variation of the useful functional forms in tgrm; of th? of the Coulomb force along the plane of the orbit, one has to
vector Floquet components. Let us start by considering varia-

tions along the plane of the orbit. Using the results of Ap_evaluate

In this Appendix we calculate the variation of the terms

pendix B, the planar variational equations of Ef). can be
written most simply in terms of the Floquet components of X | 0% 3(xdx+ydy)x (B1)
Eq.(Al) as X3 r® re ’
_Ap2yd— E(Xd+3Kd):0 wherer=|x| and (6x,8y) are the functions of time repre-
no2m e senting the variation about the circular orbit
—4n2x2+4Z (X! +3K )/ 0 =0, (Ad) X==xrcogwt), y==rsin(ot). (B2)

Substituting Eq(B2) into Eq.(B1) we obtain

—4n?X' — 47 ¢ (X +3KE)=0,

2
1+ =
e

X
whereg is defined as the ratio of the mass of the nucleus to 5( r_3) ={0x—3[1+cog20wt)]ox— 3sin(2wt) Y},
the electronic mass. For example, in the case of helgum n

~7344. For the Coulomb dynamics only, also the last equa-

tion of (A4) depends only on the radiation coordinate. It is y 3 3 .

good to have a scheme in mind to keep track of what we 9 3 ={oy—z[1-cog2wt)]dy - 2siN(2wt) 5X}n,
have done so far: EqA4) is the variation of Eq(7) divided n B3
by M.w3, which we write schematically as (B3)

where the subscript indicates thenth Floquet component.

(0)_ sE(0)
M: Using Eq.(Al) we find (6x),=x, and (¥y),=Y, and
Mew(z)
. . R X 1
In Sec. IV we consider the variation of the relativistic cor- 8| 5| == 5 (X t3Up),
rections to the acceleration, which we caMA(®), and the r 2r
Page series second order force, which we é&ff?). The (B4)
equations of motion will then be written schematically as 1
y
5(—3) =——3(Xn+3vn),
MSAO® — sEO®  sMA®R — s r°), 2r
+

2 2
Mews Mews where we have used,, andV, as defined by EqA3). An
In this way, we keep adding higher-order matrices and cal€CONOMIc way to write this equation is
culating Hill's secular determinant up to an order. Since we
will be adding the matrices, it is necessary to keep some X
convention about the order in which the equations appear. 3
The convention is that we always repeat what we did in Eq. n

(A4), that is, first the equation of motion fdixy divided by

1
; =—F(Xn+3Kn).

Mewé, then the equation of motion for théx,, divided by When we cons_ld_er the set_:ond-order terms of the Page series
M w2 and then the equation faix divided by M 4w2 and the relativistic correction of the mass, we need to evalu-
a0 e™o- ate the variation of many other functions besiaés’. This

We recall thatn=n+u, and there is one equation for i5 done in Appendix C, in a way analogous to the above
every value ofn. In principle this would lead to an infinite  c5\cylations. Last, along thedirection the variation is sim-
Hill's secular determinant, which is the case for an elliptic

periodic orbit. For the case of circular orbits, when we go to
the £ and y variables, we find that thé,, variables couple
only to x,+1 and vice versa. This is obtained by taking linear 5(

combinations of thex and y components of the vectorial

z oz
===
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APPENDIX C: VARIATION OF THE SECOND-ORDER wherer is the interparticle distance arRithe radius of the
FORCES electronic orbits. The tilde over means the vector obtained
from x by exchanging the components and changing the sign

. . . 2 .
In this Appendix we consider the terms of orde¥¢)“ in of the second component.

the force. One contribution comes from the first relativistic
correction to the electronic massigke « particle is at rest
The x component of this term is

Mg . .. M .
M ea? =—= (X X)Xt — 8| Xe| 2Xe). _ .

c 2c where again the superscriptcan take the values 1, 2, r,
andd, to represent a patrticle’s coordinate or a combination
of the coordinates, as defined in E&2). The second-order

Substituting the equation for a circular orbit, we find e g
electric field produced by the nucleus on each electron is

M w? O ) sy
(Mea?)=——|BI” [Z—Cos{2wt)]w—:—sm(2wt)w—: 262| |72

o (BGTKD),

+2

sin(2wt) % —coq2wt) %) 1
w w the same for the two electrons. Last, we calculate the varia-
tion of the second-order magnetic forces. Thearticle is at

Using the above equation, equati6hl) for ox and defini-  rest and does not produce any magnetic field. The two elec-

tion (A3) for U,, andL,, we obtain the Floquet component trons produce a magnetic field at the center of the orbit, and
" " the Lorentz magnetic force over the nucleus is

(M a'?) ;=M w?| Be|2(—4n?xE+2n2U S+ 2inV®).
(5F0) 4Zie*wl
They component can be calculated in an analogous way. To Man Mc?R3
write the two components in a concise vector form we define

an extra useful vector quantity

n?

wherel, is thez component of the angular momentum of one

v electron. The variation of the electron-electron magnetic
Ke= " } force done by electron 2 over electron 1 is
_Un
This quantity is obtained from the vectét [defined just (6F21)n=r—3{2|n(2xn =X+ K = (xp+Kp)}-

below Eq.(A3) by exchanging the components and changing
the sign of the second compongr¥laking use of the above,
we write the relativistic second-order force as

(C2

For the force done by electron 1 over electron 2 just inter-
(6Ma?) =M 02| B 2(— 4n?xe+ 2n2KE+ 2inK®). change the indices and the sign in frontxdfandK9.

APPENDIX D: CONSTRUCTION OF THE EXTRA

Using a procedure analogous to the above, we can obtain the COMPLEX CONSTANT OF MOTION

variation of the second-order electric interaction of E).
First, the variation of the second-order electric field produced To construct the resonant normal form, it is again conve-
by the electron at the point on the observation poirg is  nient to move to the rotating system. For this section we
calculated. The vector pointing from the electron to the poinidisregard the acceleration of the nucleus, so #hatO0. It is

p (where another particle )iss x=x,—X, (« designates the also convenient to use the Hamiltonian formalism associated
other particle. In all cases of interest we hawe=—gx.. It with the Darwin Lagrangian, written in terms of the coordi-
is easy to verify that for electron-proton interactigir 1 and  natesx, andx,4, as defined by EqA2), and the conjugate
for electron-electron interactiog=2. According to Eq(2),  momentap, andpy. We make a last transformation to the
the variation of the electric field is proportional to the prod- normal mode coordinates of the Jacobian matrix about the

uct of the charges times fixed point corresponding to the circular orbit. Lef, i

. . =1,...,12, be the coordinates corresponding to the normal

Bl B (n-Bon| |Be?[(9-1 modes of frequencies;, i=1, ...,12, respectively. These
6 >3 “orc orc2 = >3 l( 2 (Xat3Ky) coordinates will be complex-valued linear functions of the

n coordinates and momenta. Because of the simplectic symme-
o _r\2 L try, the eigenvalues exist in paits and — w [40]. We order
+2n%g%(xS+K§E) + 4n? §> xS—2ign(xt— Kﬁ)], the modes such that,,_; is the coordinate corresponding to
the frequencyw,,_;=— w; . Because there are six coordi-

(Cy nates and six conjugate momenta, we have twelve normal
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coordinates. For example, the normal mode solution for thevhere theC, are constant numbers. This is an analytic func-

coordinateu, will be given by tion by construction, because it involves only integer powers
_ of the coordinates. We now construct a constant where the
us(t) =u(0)expliwst), lowest-order monomial is defined iy as of Eq.(D1), plus

higher-order monomials necessary to vanish the time deriva-

and so on for the other coordinates. We define these coordilve at higher orders. For example, if the resonance condition
nates to describe the linearization about the fixed point cort31) is our leading resonance, then we can construct a non-
responding to the circular orbit, so that at the circular orbittrivial analytic constant by starting the Maclaurin series with
all coordinates are zero. ki=1, kg=1, k3=2, andk,=ks=---=k;,=0, as of Eq.

We want to find an extra constant with an analytic form, (31). To produce the successive powers of the constant, let us
which implies it has a formal Taylor series about the fixedWrite the constant as
point (not necessarily convergenfor instance, the integer
powers appearing in this Taylor series are the cause of the ‘ v
integer numbers in the necessary resonance condiéibn c=u °+k2 C Ut (D2)
Before we go on, let us introduce some definitions to sim- !
plify the exposition: Because we consider a Maclaurin ex- o _
pansion of the constant of motion, some notation concernini’heré we have separated out the contribution of the leading

monomials is in place: We write a monomial in the coordi- €M atko, the contribution of the monomials of immedi-
natesu;, j=1,...,12 as ately next order, which we index witky , and the dots rep-

resent monomials of higher than immediately next orders.
Ky K ke This _is a complex-valued function, which_means two rea]
Ut=uiuy® - -ugy, functions of phase space. Of course, starting the series with
the lattice vector- kg will produce the complex conjugate of
wherek is a twelve-dimensional vector of integer compo- the same function. Next we evaluate the time derivative of

nents. For example, if theh coordinate is not present in the Eq. (D2).

monomial, therk; = 0. We use the convention that whienis The time derivative of the leading monomial produces the
negative, the coordinate to be used is the complemekttof ~ S@me monomial multiplied b w, =0, plus higher-order
12 with the positive powerk(;,_;=—k;). For example, terms, as

_1E d

Un(H) "= ur(1), — (UKo = Awy Uko+ S Ny Ukt
dt 0 k¢

and so on for all the other coordinates. Mode 7, by definition,

has a frequency that is the negativeegf. With this convec-  This monomial is then almost a constant, up to higher order

tion, even though we are working with negative integers, allmonomials. To produce the higher monomials of the con-

the powers of the coordinates in the series for the constanrftant, let us focus on one such term of immediately next

are positive, as it should for any good Taylor series. order, corresponding to a vectioy and with coefficienty .
Let us define the order of a monomial by The time derivative o is
0=ky|+[ka|+ - - - +[Kkqg, dcC

—=Aw, C, UKo+ >, N UK+ ...+ > Aw, C, UK
dt 0 "o G 1 G 1K1
and the frequency associated with a monomial as
+.. (D3)

Awk=k1w1+k2w2+~ . -+k12w12. . . . .
It is easy to see that the next-order nonlinear contribution of
The necessary condition for the existence of the extra andhe Ieadir)g monomial to the time derivative can be canceled
lytic constant is that some resonance condition must be saby choosing
isfied among the linear eigenvalues. In the following we
show how to construct the constant starting from a leading C
. K
resonanc@4—6,8. Let us assume that a resonance defined by

ko exists It is well known that this perturbation scheme does not
produce a convergent constant, which is not a problem if we

Aw,=0. (D1)  are investigating stability for a finite time scale. The usual
procedure is to terminate the series using some optimal trun-

Our proposed analytic constant must have a formal Maclau¢ation[39]. This produces a quasiconstant for a long time-

rin series expansion given by scale, which still provides stability in the finite time for the

special orbits. The detailed investigation of this issue is be-
yond the scope of the present paper. Here we are mainly

C= E C UK, _concerned with exploring the necessary condition for the ex-

K istence of such a constant.

= _NkllAwkl'

1
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